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Abstract. A poset is Esakia representable when it is isomorphic to the prime spectrum of a Heyting
algebra. Notably, every Esakia representable poset is also the spectrum of a commutative ring with
unit. The problem of describing the Esakia representable posets was raised in 1985 and remains
open to this day. We recall that a forest is a disjoint union of trees and that a root system is the order
dual of a forest. It is shown that a root system is Esakia representable if and only if it satisfies a
simple order theoretic condition, known as “having enough gaps”, and each of its nonempty chains
has an infimum. This strengthens Lewis’s characterization of the root systems which are spectra of
commutative rings with unit. While a similar characterization of arbitrary Esakia representable
forests seems currently out of reach, we show that a well-ordered forest is Esakia representable if
and only if it has enough gaps and each of its nonempty chains has a supremum.

1. Introduction

The prime spectrum of a commutative ring with unit is the poset of its prime ideals. The
representation problem, raised by Kaplansky in [15, pp. 5–7], asks for a characterization of the
posets isomorphic to the prime spectra of commutative rings with unit. A similar problem was
raised by Grätzer in [10, Problem 34, p. 156] in the context of order theory. We recall that the
prime spectrum of a bounded distributive lattice is the poset of its prime filters. Grätzer’s problem
asks for a characterization of the posets isomorphic to the prime spectra of bounded distributive
lattices.

Notably, the two problems coincide because commutative rings with unit and bounded
distributive lattices have the same prime spectra (see, e.g., [20, Thm. 1.1]). More precisely,
Hochster showed that the prime spectra of commutative rings with unit endowed with the
Zariski topology are precisely the spectral spaces [12] (see also [6]) and Stone did the same
for the prime spectra of bounded distributive lattices [23]. Because of this, we say that a poset
is representable when it is isomorphic to the prime spectrum of a commutative ring with unit
(equiv. of a bounded distributive lattice). In this parlance, the representation problem asks for a
characterization of the representable posets.

Some conditions equivalent to the representability of a poset are known. For instance, Joyal
[14] and Speed [22, Thm. p. 85] showed that a poset is representable if and only if it is profinite.
Moreover, in view of Priestley duality [18, 19], a poset is representable precisely when it can be
endowed with a topology that turns it into a Priestley space. However, these characterizations
provide little information on the inner structure of representable posets, which is why the
representation problem remains elusive to this day.

One of the main positive results on the inner structure of representable posets is due to Lewis
[16, Thm. 3.1]. We recall that a poset is a tree when it is rooted and its principal downsets are
chains and that it is a root system when it is a disjoint union of order duals of trees. Lewis showed
that a root system X is representable if and only if each of its nonempty chains has an infimum
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and X has enough gaps, where the latter means that if x < y, there exist z, v ∈ [x, y] such that
z is an immediate predecessor of v. Since the class of representable posets is closed under the
formation of order duals, we obtain that a forest (i.e., a disjoint union of trees) is representable if
and only if it has enough gaps and each of its nonempty chains has a supremum.

In this paper, we focus on the representation problem for a prominent class of bounded
distributive lattices, namely, Heyting algebras. These are the bounded distributive lattices in
which the meet operation has an adjoint, sometimes called implication. Heyting algebras arise in
different areas of mathematics, including:

(i) topology: the lattice of open sets of any topological space is a Heyting algebra;
(ii) domain theory: each continuous distributive lattice is a Heyting algebra;
(iii) topos theory: the subobject classifier of any topos is a Heyting algebra;
(iv) algebra: any distributive algebraic lattice is a Heyting algebra;
(v) constructivism and logic: the algebraic models of intuitionistic logic are Heyting algebras;
(vi) order theory: Heyting algebras are the most common generalization of Boolean algebras.

In 1985, Esakia raised the problem of describing the posets isomorphic to the prime spectra of
Heyting algebras [9, Appendix A.5]. Accordingly, we say that a poset is Esakia representable when
it is isomorphic to the prime spectrum of a Heyting algebra. While every Esakia representable
poset is representable in the traditional sense (because every Heyting algebra is a bounded
distributive lattice), the converse does not hold in general: for instance, the poset depicted in
Figure 1 is representable, but not Esakia representable (see [3, Example 5.6]).

After four decades, the problem of describing the Esakia representable posets remains open.
In addition, this problem cannot be reduced to the one of describing the representable posets
because no concrete way of isolating the Esakia representable posets from the class of all the
representable posets is known. Nonetheless, some progress has been made and, recently, a
characterization of the Esakia representable root systems whose maximal chains are either finite
or of order type dual to ω + 1 was obtained (see [2, Cor. 6.20] and its proof).

In this paper, we extend this result by providing a description of all the Esakia representable
root systems. More precisely, we show that a root system is Esakia representable if and only if has
enough gaps and each of its nonempty chains has an infimum (Theorem 3.5). As a corollary, we
obtain Lewis’ classical description of the representable root systems. We recall that the Heyting
algebras whose prime spectrum is a root system have been called Gödel algebras [11] (see also
[13, Thm. 2.4]). Therefore, our result takes the form of a characterization of the prime spectra of
Gödel algebras.

Contrarily to the case of arbitrary representable posets, the class of Esakia representable
posets is not closed under order duals. In particular, the tree depicted in Figure 1 is not Esakia
representable, although its order dual is Esakia representable because it has enough gaps and its
nonempty chains have infima. Notice that the tree in Figure 1 contains an infinite descending
chain. We will show that Lewis’ description of the representable forests can be extended to Esakia
representable forests by prohibiting the presence of such chains. More precisely, a forest is said
to be well-ordered when it has no infinite descending chain. We show that a well-ordered forest is
Esakia representable if and only if each of its nonempty chains has a supremum (Theorem 4.3).

At the heart of our proof stands a novel compactness argument which combines intuitions
from combinatorics, algebra, and topology and highlights the higher complexity of Esakia
representable forests, as opposed to arbitrary representable forests. It remains an open problem
to give a full characterization of arbitrary (i.e., not necessarily well-ordered) Esakia representable
forests.
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Figure 1. A representable tree that is not Esakia representable.

2. Representable posets

Among bounded distributive lattices, a special role is played by Heyting algebras [1, 9, 21].
We recall that a bounded distributive lattice A is said to be a Heyting algebra when it can be
expanded with a binary operation→ such that for every a, b, c ∈ A,

a ∧ b 6 c ⇐⇒ a 6 b→ c.

In this case, this expansion is unique and b→ c = max{a ∈ A : a ∧ b 6 c}.
In view of Priestley and Esakia dualities [8, 9, 18, 19], the problem of describing the spectra of

bounded distributive lattices and Heyting algebras can be phrased in purely topological terms,
as we proceed to illustrate. Given a poset 〈X;6〉 and Y ⊆ X , let

↑Y := {x ∈ X : ∃y ∈ Y s.t. y 6 x} and ↓Y := {x ∈ X : ∃y ∈ Y s.t. x 6 y}.
The set Y is said to be an upset (resp. downset) if Y = ↑Y (resp. Y = ↓Y ). When Y = {x}, we
will write ↑x and ↓x instead of ↑{x} and ↓{x}. We denote the set of clopen upsets of an ordered
topological space X by ClUp (X).

Definition 2.1. An ordered topological spaceX = 〈X;6, τ〉 is a Priestley space when it is compact
and satisfies the Priestley separation axiom: for every x, y ∈ X ,

if x 
 y, there exists U ∈ ClUp (X) such that x ∈ U and y /∈ U.
If, in addition, ↓U is open for every open set U ⊆ X , then X is said to be an Esakia space.

Let A be a bounded distributive lattice. A set F ⊆ A is a prime filter of A when it is a nonempty
proper upset such that for every a, b ∈ A,

(a, b ∈ F =⇒ a ∧ b ∈ F ) and (a ∨ b ∈ F =⇒ a ∈ F or b ∈ F ).

The prime spectrum of A is the poset 〈Pr (A) ;⊆〉, where Pr (A) is the set of prime filters of A.
Now, for each a ∈ A let

γA (a) := {F ∈ Pr (A) : a ∈ F}.
Then the triple A+ := 〈Pr (A) ;⊆, τ〉, where τ is the topology on Pr (A) generated by the subbase

{γA (a) : a ∈ A} ∪ {γA (a)c : a ∈ A},
is a Priestley space. If, moreover, A is a Heyting algebra, then A+ is an Esakia space. On the
other hand, given a Priestley space X , the structure X+ := 〈ClUp (X) ;∩,∪, ∅, X〉 is a bounded
distributive lattice. If, in addition, X is an Esakia space, then X+ is a Heyting algebra in which
the operation→ is defined as

U → V := {x ∈ X : U ∩ ↑x ⊆ V }.
It is a consequence of Priestley and Esakia dualities that these transformations are one inverse to
the other, in the sense that

A ∼= (A+)+ and X ∼=
(
X+
)

+
. (1)
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Recall that a poset is representable (resp. Esakia representable) when it is isomorphic to the prime
spectrum of a bounded distributive lattice (resp. Heyting algebra). The next observation is a
consequence of the isomorphisms in condition (1).
Theorem 2.2. The following conditions hold:

(i) A poset is representable iff it can be endowed with a topology that turns it into a Priestley space;
(ii) A poset is Esakia representable iff it can be endowed with a topology that turns it into an Esakia

space.
While the structure of (Esakia) representable posets remains largely unknown, they need to

satisfy a number of nontrivial properties. Given a poset 〈X;6〉 and x, y ∈ X , we say that x is an
immediate predecessor of y when x < y and there exists no z ∈ X such that x < z < y. We write
x ≺ y to indicate that this is the case.
Definition 2.3. A poset X = 〈X;6〉 is said to

(i) have enough gaps when for every x, y ∈ X such that x < y, there exist x′ > x and y′ 6 y
such that x′ ≺ y′;

(ii) be Dedekind complete when every nonempty chain in X has a supremum and an infimum.
A subset U of a poset X is order open when it belongs to the least family O of subsets of X

such that:
(i) {x}c ∈ O for every x ∈ X ;
(ii) if U ∈ O, then (↑ (U c))c , (↓ (U c))c ∈ O;
(iii) O is closed under finite intersections and arbitrary unions.
Definition 2.4. A poset X is said to be order compact when for every family {Ui : i ∈ I} of order
open sets,

if
⋃
i∈I

Ui = X, there exists a finite J ⊆ I such that
⋃
j∈J

Uj = X.

Proposition 2.5. Representable posets have enough gaps and are both Dedekind complete and order
compact.
Proof. For the fact that representable posets have enough gaps and are Dedekind complete, see
[15, pp. 5–7]. On the other hand, every representable poset X is order compact because the
order open sets are open in any topology that turns X into a Priestley space and Priestley spaces
are compact (a slightly weaker statement can be found in [17, p. 822, condition (H)]. �

The converse of Proposition 2.5 does not hold, however, as shown in [17, Example 2.1]. We
will also rely on the following observation.
Proposition 2.6. The following conditions hold:

(i) The class of representable posets is closed under disjoint unions and order duals;
(ii) The class of Esakia representable posets is closed under disjoint unions.

Proof. Condition (ii) is Proposition 5.1(6) in the Appendix of [9]. Therefore, we turn to prove
Condition (i). The fact that the class of representable posets is closed under order duals follows
immediately from Theorem 2.2(i) and the fact that if 〈X;6, τ〉 is a Priestley space, so is 〈X;>, τ〉.
On the other hand, closure under disjoint unions holds by [17, Thm. 4.1]. �

Notice that the class of Esakia representable posets is not closed under order duals because
the poset in Figure 1 is not Esakia representable [3, Example 5.6], although its order dual is [2,
Cor. 6.20].

Given a pair of sets X and Y , we will write X ⊆ω Y to indicate that X is a finite subset of Y .
We will rely on the following easy observation.
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Lemma 2.7. Let X be a poset and Y,Z ⊆ω X . Then (↑Y ∩ ↓Z)c is an order open set of X .
Proof. We will show that Y c and Zc are order open. By symmetry it suffices to prove that Y c is
order open. If Y = ∅, then Y c = X is the intersection of the empty family. As the family of order
open sets is closed under finite (possibly empty) intersections, we are done. Then we consider
the case where Y 6= ∅. Consider an enumeration Y = {y1, . . . , yn}. Since the sets {y1}c, . . . , {yn}c
are order open, so is their intersection Y c = {y1}c ∩ · · · ∩ {yn}c. Hence, Y c and Zc are order
open sets as desired. As a consequence, (↑Y )c and (↓Z)c are order open too and so is their union
(↑Y )c ∪ (↓Z)c. Since (↑Y )c ∪ (↓Z)c = (↑Y ∩ ↓Z)c, we are done. �

Throughout the paper, we denote the class of all ordinals by Ord. Furthermore, given a poset
〈X;6〉 and a set Y ⊆ X , we denote the sets of maximal and minimal elements of the subposet
〈Y ;6〉 by maxY and minY , respectively. Furthermore, when they exist, we let supY and inf Y
be the supremum and infimum of Y , respectively.

3. Esakia representable root systems

Definition 3.1. A poset is said to be
(i) a tree when it is rooted and its principal downsets are chains;
(ii) a forest when it is isomorphic to the disjoint union of a family of trees;
(iii) a root system when it is the order dual of a forest.

One of the main positive results on the representation problem is the next theorem of Lewis.
Theorem 3.2 ([16, Thm. 3.1]). A root system is representable iff it has enough gaps and each of its
nonempty chains has an infimum.

In this section, we strengthen this result by showing that it still holds in the context of Esakia
representable posets. To this end, we recall that a Heyting algebra is a Gödel algebra [11] when it
validates the equation

(x→ y) ∨ (y → x) ≈ 1

or, equivalently, it is isomorphic to a subdirect product of chains [13, Thm. 1.2]. From a logical
standpoint, the importance of Gödel algebras comes from the fact that they algebraize the Gödel-
Dummett logic [7] in the sense of [4] (see, e.g., [5]). Notably, Gödel algebras can be characterized
in term of the shape of their spectra.
Theorem 3.3 ([13, Thm. 2.4]). A Heyting algebra is a Gödel algebra iff its prime spectrum is a root
system.

From Theorems 2.2(ii) and 3.3 we deduce the following.
Corollary 3.4. A poset is isomorphic to the prime spectrum of a Gödel algebra iff it is an Esakia repre-
sentable root system.

The aim of this section is to establish the following description of the Esakia representable
root systems (equiv. of the prime spectra of Gödel algebras).
Theorem 3.5. A root system is Esakia representable iff it has enough gaps and each of its nonempty chains
has an infimum.

We remark that Theorem 3.2 is an immediate consequence of Theorem 3.5. More precisely,
the implication from left to right in Theorem 3.2 holds by Proposition 2.5, while the other impli-
cation holds by Theorem 3.5 and the fact that every Esakia representable poset is representable.
Furthermore, a weaker version of Theorem 3.5, stating that the result holds for the root systems
whose maximal chains are either finite or of order type dual to ω + 1, can be deduced from [2,
Cor. 6.20].
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Proof of Theorem 3.5. In view of Proposition 2.5, it suffices to prove the implication from right to
left. To this end, it will be enough to show that the following condition holds for every poset X
whose order dual is a tree:

if X has enough gaps and each of its nonempty chains has an infimum,
then X is Esakia representable. (2)

For suppose that condition (2) holds for the order duals of trees and consider a root system
X with enough gaps and in which each nonempty chain has an infimum. Since X is a root
system, it is the disjoint union of a family of posets {Xi : i ∈ I} whose order duals are trees.
Furthermore, each Xi has enough gaps as well as infima of nonempty chains. Therefore, each Xi

is Esakia representable by condition (2). Hence, the disjoint unionX is also Esakia representable
by Proposition 2.6(ii) as desired.

Therefore, we turn to prove condition (2). Consider a poset X = 〈X;6〉with enough gaps, in
which every nonempty chain has an infimum, and whose order dual is a tree. Let then τ be the
topology on X generated by the subbase

S := {↓x : ∃y ∈ X s.t. x ≺ y} ∪ {(↓x)c : ∃y ∈ X s.t. x ≺ y}.
We will show that X = 〈X;6, τ〉 is an Esakia space. The proof proceeds through a series of
claims.

Claim 3.6. The topological space X is compact.

Proof of the Claim. Suppose the contrary, with a view to contradiction. By Alexander’s subbase
theorem there exists an open cover C ⊆ S of X without any finite subcover. To this end, we will
define recursively a sequence {xα : α ∈ Ord} of elements of X such that for every ordinal α,

(i) (↓xα)c ∈ C;
(ii) xβ < xγ for every γ < β 6 α.

Clearly, the validity of condition (ii) for every ordinal α implies that X is a proper class, which
is the desired contradiction.

Consider an ordinal α and suppose that we already defined a sequence {xβ : β < α} of
elements of X such that
(L1) (↓xβ)c ∈ C for each β < α;
(L2) xβ < xγ for every γ < β < α.
We will prove that the set Y := {xβ : β < α} has an infimum in X . If Y = ∅, then inf Y is the
maximum of X , which exists because X is the order dual of a tree. The we consider the case
where Y 6= ∅. In view of condition (L2), the set Y is a chain. As nonempty chains have infima by
assumption, we conclude that inf Y exists.

Since C covers X , there exists U ∈ C such that inf Y ∈ U . Furthermore, as C ⊆ S, there also
exists z ∈ X such that
(C1) z has an immediate successor;
(C2) either U = ↓z or U = (↓z)c.

We will show that the case where U = ↓z never happens. Suppose the contrary, with a view
to contradiction. We have two cases: either inf Y ∈ Y or inf Y /∈ Y . First, suppose that inf Y ∈ Y .
Since inf Y ∈ U = ↓z, we have X = U ∪ (↓ inf Y )c. As U ∈ C and C lacks a finite subcover by
assumption, this yields (↓ inf Y )c /∈ C. On the other hand, from inf Y ∈ Y and condition (L1) it
follows that (↓ inf Y )c ∈ C, a contradiction. Then we consider the case where inf Y /∈ Y . Together
with the fact that ↑ inf Y is a chain (because the order dual of X is a tree), this implies that inf Y
does not have immediate successors. By condition (C1) we obtain inf Y 6= z. Therefore, from
inf Y ∈ U = ↓z it follows that inf Y < z. As ↑ inf Y is a chain and Y = {xβ : β < α}, there exists
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β < α such that xβ < z. By condition (L1) we have (↓xβ)c ∈ C which, together with xβ < z and
↓z = U ∈ C, implies that {(↓xβ)c , ↓z} is a finite subcover of C, a contradiction. Therefore, we
conclude that U 6= ↓z as desired. By condition (C2) this means that U = (↓z)c.

We will prove that z < xβ for every β < α. Suppose, on the contrary, that there exists β < α
such that z = xβ or z 
 xβ . From inf Y ∈ U = (↓z)c it follows that inf Y 
 z. Since xβ ∈ Y , this
yields xβ 
 z. Together with the assumption that either z = xβ or z 
 xβ , this implies z 
 xβ .
Consequently, xβ and z are incomparable. As the order dual of X is a tree, this guarantees that
↓xβ ∩ ↓z = ∅. Hence,

(↓xβ)c ∪ (↓z)c = (↓xβ ∩ ↓z)c = ∅c = X.

Since (↓z)c = U ∈ C and (↓xβ)c ∈ C (the latter by condition (L1)), we obtain that {(↓xβ)c , (↓z)c}
is a finite subcover of C, a contradiction. Hence, we conclude that z < xβ for every β < α. Thus,
letting xα := z, we obtain xα < xβ for every β < α. Since (↓xα)c = (↓z)c = U ∈ C, the elements
in the sequence {xβ : β 6 α} satisfy conditions (i) and (ii) as desired.

This completes the recursive definition of the sequence {xα : α ∈ Ord} and produces the
desired contradiction. �

Claim 3.7. The ordered topological space X satisfies Priestley separation axiom.

Proof of the Claim. Consider x, y ∈ X such that x 
 y. If y has an immediate successor, we have
↓y, (↓y)c ∈ S by the definition of S . In this case, (↓y)c is a clopen upset containing x and missing
y as desired. Then we consider the case where y does not have immediate successors. Notice
that y is not the maximum of X , otherwise we would have x 6 y, which is false. Therefore,
↑y r {y} 6= ∅. Furthermore, ↑y r {y} is a chain because the order dual of X is a tree. Now,
since ↑y r {y} is a nonempty chain, it has an infimum by assumption. As y lacks immediate
successors, this infimum must be y itself. As a consequence, from x 
 y it follows that there
exists z > y such that x 
 z. As X has enough gaps, there exists also an element y+ ∈ X with an
immediate successor and such that y 6 y+ < z. Consequently, ↓y+, (↓y+)

c ∈ S by the definition
of S . Furthermore, x 
 y+ because x 
 z and y+ 6 z. Thus, (↓y+)

c is a clopen upset containing
x and missing y. �

From Claims 3.6 and 3.7 it follows that X is a Priestley space. In order to prove that it is also
an Esakia space, we need to show that the downset of every open set is also open. To this end,
let B be the base for the topology of X consisting of all the finite intersections of the elements of
the subbase S. As every open set U is the union of a family {Ui : i ∈ I} ⊆ B and

↓U =
⋃
i∈I
↓Ui,

it will be enough to prove that the downset of every element of B is open.
Consider U1, . . . , Un ∈ S. We need to show that ↓ (U1 ∩ · · · ∩ Un) is open. We may assume

that U1 ∩ · · · ∩ Un 6= ∅, otherwise ↓ (U1 ∩ · · · ∩ Un) = ∅ and we are done. By the definition
of S for every m 6 n there exists xm ∈ X such that either Um = ↓xm or Um = (↓xm)c. Let
Y := {xm : Um = ↓xm} and let Y c be the complement of Y relative to {xm : m 6 n}. Observe
that

U1 ∩ · · · ∩ Un =
⋂

xm∈Y
↓xm ∩

⋂
ym∈Y c

(↓xm)c =
⋂

xm∈Y
↓xm ∩ (↓ (Y c))c . (3)

We have two cases: either Y = ∅ or Y 6= ∅. First, suppose that Y = ∅. In view of the
above equalities, we have U1 ∩ · · · ∩ Un = (↓ (Y c))c. As U1 ∩ · · · ∩ Un 6= ∅ by assumption,
the upset (↓ (Y c))c is nonempty and, therefore, contains the maximum > of X . Consequently,
> ∈ U1 ∩ · · · ∩ Un and, therefore, ↓(U1 ∩ · · · ∩ Un) = X is an open set.
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x

∞

y1 y2 y3

. . .

Figure 2. An infinite root system which can be turned into a Priestley space that
is not an Esakia space.

Then we consider the case where Y 6= ∅. We will prove that Y is a chain. For if Y contained
two incomparable elements xk and xm, we would have

U1 ∩ · · · ∩ Un ⊆ Uk ∩ Um = ↓xk ∩ ↓xm = ∅,
where the last equality follows from the assumption that xk and xm are incomparable and the
order dual of X is a tree. But this contradicts the assumption that U1 ∩ · · · ∩ Un 6= ∅.

Now, since Y is a finite nonempty chain, it has a minimum y. Consequently, condition (3) can
be simplified as follows:

U1 ∩ · · · ∩ Un = ↓y ∩ (↓Y c)c . (4)
We will prove that y ∈ U1 ∩ · · · ∩ Un. In view of Condition (4), it suffices to show that

y ∈ (↓Y c)c. Suppose the contrary, with a view to contradiction. Then there exists xm ∈ Y c such
that y 6 xm. Consequently, ↓y ∩ (↓xm)c = ∅. Together with condition (4) and xm ∈ Y c, this
implies U1 ∩ · · · ∩ Un = ∅, a contradiction. Hence, we conclude that y ∈ U1 ∩ · · · ∩ Un.

As a consequence, we obtain that ↓y ⊆ ↓ (U1 ∩ · · · ∩ Un). Since the reverse inclusion holds by
condition (4), we conclude that ↓ (U1 ∩ · · · ∩ Un) = ↓y. From y ∈ Y and the definition of Y it
follows that ↓y = Um for some m 6 n. Therefore, ↓ (U1 ∩ · · · ∩ Un) = ↓y = Um. As Um ∈ S, we
conclude that ↓ (U1 ∩ · · · ∩ Un) is an open set. �

In view of Theorems 3.2 and 3.5, a root system is representable if and only if it is Esakia
representable. Because of this, it is natural to ask whether every Priestley space whose underlying
poset is a root system is also an Esakia space. The next example provides a negative answer to
this question.

Example 3.8. Let 〈X;6〉 be the infinite root system depicted in Figure 2. When endowed with
the topology

τ = {U ⊆ X : either∞ /∈ U or U is cofinite},
the root system 〈X;6〉 becomes a Priestley space 〈X;6, τ〉. We will show that 〈X;6, τ〉 is not an
Esakia space. Suppose the contrary, with a view to contradiction. Since x is isolated, the downset
↓x is open and, therefore, X r ↓x is closed. As every point of X other than∞ is isolated, we
obtain that X r ↓x is an infinite closed set whose members are all isolated points. Clearly, this
contradicts the assumption that 〈X;6, τ〉 is compact. �

4. Esakia representable well-ordered forests

Recall from Proposition 2.6(i) that the class of representable posets is closed under order
duals. Therefore, Theorem 3.2 can also be viewed as a characterization of the representable
forests. More precisely, we have following.

Theorem 4.1. A forest is representable iff it has enough gaps and each of its nonempty chains has a
supremum.
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It is therefore natural to wonder whether the above result holds for Esakia representable
forests too. However, this is not the case because the tree depicted in Figure 1 is not Esakia
representable (see [3, Example 5.6]), although it has enough gaps and each of its nonempty
chains has a supremum. Notice that the tree in Figure 1 contains an infinite descending chain

· · · < xn < · · · < x2 < x1 < x0.

Our main result states that the above description of the representable forests can be extended to
Esakia representable forests by prohibiting the presence of such chains.

Definition 4.2. A forest is well-ordered when it lacks infinite descending chains, that is, it does
not contain any subposet isomorphic to the order dual of 〈N;6〉.1

Notice that every well-ordered forest has enough gaps. Therefore, our main result takes the
following form.

Theorem 4.3. A well-ordered forest is Esakia representable iff each of its nonempty chains has a supremum.

LetX = 〈X;6〉 be a well-ordered forest. We recall for each x ∈ X there exists a unique ordinal
α such that 〈↓xr {x};<〉 is isomorphic to 〈α;∈〉. The ordinal α is called the order type of x and
will be denoted by h (x). Given Y ⊆ X and an ordinal α, we let

h (X) := the least ordinal α s.t. h (x) 6 α for every x ∈ X;

Xα := {x ∈ X : h (x) = α};
X∗α := {x ∈ X : h (x) ∗ α} for ∗ ∈ {6, <,>, >};
↑αY := X6α ∩ ↑Y.

The implication from left to right in Theorem 4.3 holds by Proposition 2.5. The rest of the
paper is devoted to proving the implication from right to left. As in the case of Theorem 3.5, it
suffices to prove this implication for well-ordered trees (as opposed to arbitrary well-ordered
forests). Therefore, from now on we fix an arbitrary well-ordered tree X = 〈X;6〉 in which
every nonempty chain has a supremum. Our aim is to prove that X is Esakia representable. To
this end, we will define a topology τα on X6α for each ordinal α and show that 〈X;6, τh(X)〉 is
indeed an Esakia space (observe that X = X6h(X)).

First, let τ0 be the unique topology on the singleton X60. For the successor case, suppose that
we already defined a topology τα on X6α for some ordinal α. Then let

Pα := {x ∈ Xα : ∃y ∈ Xα+1 s.t. x < y}
and for each x ∈ Pα choose an element x+ ∈ Xα+1 such that x < x+. Moreover, let

Sα+1 := Xα+1 r {x+ : x ∈ Pα}.
Lastly, let τα+1 be the topology on X6α+1 generated by the subbase Sα+1 comprising the sets

(i) {x} for every x ∈ Sα+1;
(ii) ↓x for every x ∈ Pα;
(iii) (V ∪ ↑α+1 (V ∩Xα))r ↓Z for every V ∈ τα and every Z ⊆ω Pα ∪ Sα+1 (see Figure 3).

For the limit case, let α be a limit ordinal and suppose that we already defined a topology τβ
on X6β for each β < α. Then let τα be the topology on X6α generated by the subbase

Sα := {V ∪ ↑α (V ∩Xβ) : β < α and V ∈ τβ}.
The next observation will be used later on.
1Well-ordered trees and forests are often endowed with a strict order relation. For the present purpose, however,

it is convenient to endow them with a nonstrict order relation, so that they can be viewed as posets. The two
presentations are of course equivalent.
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Xα+1

x, y ∈ Xα

U = (V ∪ ↑α+1 (V ∩Xα))r ↓Z

V ∈ τα

x

z
. . .

...

y

. . .

...

. . .

...
...

. . .

Z = {y, z}

Figure 3. A member of Sα+1 of the form described in condition (iii). For each v ∈
Xα we coloured in orange the corresponding element v+ of Xα+1. Furthermore,
we coloured in green the set V ∈ τα. Lastly, Z = {y, z} is a finite subset of
Pα∪Sα+1. Then the setU = (V ∪ ↑α+1 (V ∩Xα))r↓Z is obtained by considering
the blue shape and removing the elements crossed in red from it.

Lemma 4.4. For each pair of ordinals β < α and U ∈ τβ we have U ∪ ↑α (U ∩Xβ) ∈ Sα.

Proof. Let Uα := U ∪ ↑α (U ∩Xβ). The proof proceeds by induction on α. The case where α = 0
holds vacuously because there exists no β < 0. For the successor case, we suppose that the
statement holds for α and we will prove that it also holds for α + 1. Consider β < α + 1. We
have two cases: either β = α or β < α.

First, suppose that β = α. Then U ∈ τβ = τα by assumption. Therefore, condition (iii) in the
definition of Sα+1 and the assumption that U ∈ τα guarantee that

Uα+1 = U ∪ ↑α+1 (U ∩Xα) ∈ Sα+1.

Then we consider the case where β < α. By the inductive hypothesis we have Uα ∈ τα. Thus,
condition (iii) in the definition of Sα+1 and guarantees that

Uα ∪ ↑α+1 (Uα ∩Xα) ∈ Sα+1. (5)
We claim that

Uα+1 = Uα ∪ ↑α+1 (Uα ∩Xα) . (6)
Together with condition (5), this would imply Uα+1 ∈ Sα+1 as desired.

To prove condition (6), consider x ∈ Uα+1 = U ∪ ↑α+1 (U ∩Xβ). If x ∈ U , then x ∈ Uα too
by the definition of Uα and we are done. Then we consider the case where x ∈ ↑α+1 (U ∩Xβ).
We have two cases: either x ∈ ↑α (U ∩Xβ) or x ∈ Xα+1. If x ∈ ↑α (U ∩Xβ), then x ∈ Uα by
the definition of Uα and we are done. Then we consider the case where x ∈ Xα+1. Let y be the
unique member of Xα ∩ ↓x. Since x ∈ ↑α+1 (U ∩Xβ) and β 6 α, we have y ∈ Xα ∩ ↑α (U ∩Xβ).
By the definition of Uα this yields y ∈ Uα ∩Xα and, therefore, x ∈ ↑α+1 (Uα ∩Xα) as desired.

It only remains to prove the inclusion from right to left in condition (6). Consider x ∈
Uα ∪ ↑α+1 (Uα ∩Xα). We have two cases: either x ∈ Uα or x ∈ ↑α+1 (Uα ∩Xα). First, suppose
that x ∈ Uα = U ∪ ↑α (U ∩Xβ). If x ∈ U , then x ∈ Uα+1 by the definition of Uα+1 and we are
done. While if x ∈ ↑α (U ∩Xβ), then x ∈ ↑α+1 (U ∩Xβ) ⊆ Uα+1 as desired. Then we consider
the case where x ∈ ↑α+1 (Uα ∩Xα). There exists y ∈ Uα ∩Xα such that y 6 x. Since U ∈ τβ by
assumption, we have U ⊆ X6β . Together with β < α and y ∈ Xα, this yields y /∈ U . Therefore,
from y ∈ Uα = U ∪ ↑α (U ∩Xβ) it follows that there exists z ∈ U ∩ Xβ such that z 6 y. As
y 6 x and x ∈ X6α+1, we conclude that x ∈ ↑α+1 (U ∩Xβ). Hence, x ∈ Uα+1 as desired. This
establishes condition (6) and concludes the analysis of the successor case.
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Lastly, consider the case where α is a limit ordinal. Since β < α and U ∈ τβ , the definition of
Sα ensures that Uα ∈ Sα. �

We shall now define a function that will play an important role in the compactness proof. For
every x ∈ X and ordinal α > h (x) we define and element fx (α) ∈ X by recursion as

fx (h (x)) := x;

fx (α+ 1) :=

{
(fx (α))+ if fx (α) ∈ Pα;

fx (α) otherwise;

fx (α) :=
∨
{fx (β) : h (x) 6 β < α}when α is a limit ordinal.

Informally, we will regard fx as a function from {α ∈ Ord : h (x) 6 α} to X (although its
domain is not a set). Furthermore, given a pair of ordinals α and β, we write

[α, β] := {γ ∈ Ord : α 6 γ 6 β} and [α, β) := {γ ∈ Ord : α 6 γ < β}.

Lemma 4.5. For every x ∈ X the function fx is well defined and order preserving.

Proof. It suffices to prove that for every ordinal α > h (x) the restriction fx : [h (x) , α] → X is
well defined and order preserving. The proof works by induction starting at h (x). The base case
and the successor case are straightforward. Then we consider the case where α is a limit ordinal
such that h (x) < α. By the inductive hypothesis fx : [h (x) , α) → X is well defined and order
preserving. Consequently, {fx (β) : h (x) 6 β < α} is a chain which, moreover, is nonempty
because h (x) < α. Therefore, this chain has a supremum fx (α) in X by assumption. Hence,
fx : [h (x) , α]→ X is also well defined and order preserving. �

We will make use of the following properties of the function fx.

Lemma 4.6. The following conditions hold for every x, y ∈ X and ordinal α > h (x):
(i) fx (α) ∈ maxX6α;
(ii) fx (α+ 1) /∈ Sα+1;
(iii) for every y 6 fx (α) such that h (x) 6 h (y) we have y = fx (h (y));
(iv) h (x) 6 h (fx (α)) and fx (α) = fx (h (fx (α)));
(v) for every β ∈ [h (fx (α)) , α] we have fx (α) = fx (β).

Proof. In this proof will make extensive use of the fact that fx is order preserving (see Lemma
4.5).

A straightforward induction on α establishes condition (i). Condition (ii) follows from (i)
and the definition of fx. To prove condition (iii), assume that y 6 fx (α) and h (x) 6 h (y).
We will prove that h (y) 6 α. Suppose, on the contrary, that α < h (y). By condition (i) we
have fx (α) ∈ maxX6α. Together with α < h (y), this yields y 
 fx (α), a contradiction. Since
h (y) 6 α and h (x) 6 h (y), we obtain fx (h (y)) 6 fx (α). On the other hand, y 6 fx (α) by
assumption. Therefore, the elements y and fx (h (y)) are comparable because X is a tree. By
condition (i) we have fx (h (y)) ∈ maxX6h(y). This yields y ≮ fx (h (y)) and fx (h (y)) ≮ y. As y
and fx (h (y)) are comparable, we conclude that y = fx (h (y)) as desired. Then we turn to prove
condition (iv). As h (x) 6 α, we also have x = fx (h (x)) 6 fx (α), whence h (x) 6 h (fx (α)). By
applying condition (iii) to y := fx (α) we obtain fx (α) = fx (h (fx (α))). Lastly, condition (v) is
an immediate consequence of condition (iv) and the fact that fx is order preserving. �
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Corollary 4.7. Let x ∈ X and α an ordinal such that h (x) 6 α + 1. If fx (α+ 1) ∈ U for some
U ∈ Sα+1, there exist V ∈ τα and Z ⊆ω Pα ∪ Sα+1 such that

U = (V ∪ ↑α+1 (V ∩Xα))r ↓Z.

Proof. As U is a member of Sα+1, it satisfies one of the conditions (i)–(iii) in the definition of
Sα+1. If U satisfies condition (iii), we are done. Then suppose that U does not satisfy condition
(iii), with a view to contradiction. In this case, U satisfies either condition (i) or condition (ii). If
U satisfies condition (i), there exists y ∈ Sα+1 such that U = {y}. Hence, fx (α+ 1) ∈ U = {y}
and, therefore, fx (α+ 1) = y ∈ Sα+1, a contradiction with Lemma 4.6(ii). On the other hand, if
U satisfies condition (ii), there exists y ∈ Pα such that U = ↓y. Therefore, fx (α+ 1) ∈ U = ↓y.
Since y ∈ Pα, we have y /∈ maxX6α+1, whence fx (α+ 1) /∈ X6α+1, a contradiction with Lemma
4.6(i). �

5. The main lemma

The next result plays a central role in the proof that the topological space 〈X; τh(X)〉 is compact.

Main Lemma 5.1. Let x ∈ X and α be an ordinal such that h (x) 6 α. If fx (α) ∈ U for some U ∈ Sα,
there exist

v 6 x, Y ⊆ω X>h(x) ∩ ↑αv, and Z ⊆ω X<α ∩ ↑v

such that ↑αv r (↑αY ∪ ↓Z) ⊆ U and h (v) is either zero or a successor ordinal.

Proof. It holds that h (x) 6 α by assumption. We proceed by induction on the left subtraction
α− h (x), i.e., the only ordinal β such that h (x) + β = α.

Base case. In the base case, α− h (x) = 0 and, therefore, h (x) = α. Together with the definition
of fx, this yields x = fx (h (x)) = fx (α). Consequently, Lemma 4.6(i) implies x ∈ maxX6α,
whence ↑αx = {x}. Suppose first that either h (x) = 0 or h (x) is a successor ordinal. Letting
v := x, Y := ∅, and Z := ∅ and using the assumption that x = fx (α) ∈ U , we obtain

↑αv r (↑αY ∪ ↓Z) = ↑αxr ∅ = {x}r ∅ = {x} ⊆ U

and we are done. Then we consider the case where α = h (x) is a limit ordinal. As U ∈ Sα
by assumption, the definition of Sα implies that there exist β < α and V ∈ τβ such that U =
V ∪ ↑α (V ∩Xβ). From β < α and V ∈ τβ it follows that V ∩ Xα = ∅ (because V ⊆ X6β).
As h (x) = α, this yields x /∈ V . Together with the assumptions that x = fx (α) ∈ U and
U = V ∪ ↑α (V ∩Xβ), this implies x ∈ ↑α (V ∩Xβ). Consequently, there exists v∗ 6 x such that
v∗ ∈ V ∩Xβ . Therefore,

↑αv∗ ⊆ ↑α (V ∩Xβ) ⊆ U.

Now, recall that β < α and that α is a limit ordinal. Therefore, there exists a successor ordinal γ
such that β 6 γ < α. Furthermore, as h (x) = α, h (v∗) = β, and v∗ 6 x, there exists v ∈ X such
that v∗ 6 v 6 x and h (v) = γ. In view of the above display and v∗ 6 v, by letting Y := ∅ and
Z := ∅, we conclude that

↑αv r (↑αY ∪ ↓Z) = ↑αv r ∅ = ↑αv ⊆ ↑αv∗ ⊆ U.

As h (v) = γ is a successor ordinal, we are done.
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Successor case. In the successor case of the induction, α− h (x) is a successor ordinal β + 1 and
α = h (x) + β + 1. By assumption we have

fx (h (x) + β + 1) = fx (α) ∈ U and U ∈ Sα = Sh(x)+β+1.

Therefore, we can apply Corollary 4.7 obtaining
U =

(
V ∪ ↑α

(
V ∩Xh(x)+β

))
r ↓Z̄ (7)

for some V ∈ τh(x)+β and Z̄ ⊆ω Ph(x)+β ∪ Sα.

Claim 5.2. fx (h (x) + β) ∈ V .

Proof of the Claim. Recall that fx (α) ∈ U ⊆ V ∪ ↑α
(
V ∩Xh(x)+β

)
. Therefore, we have two cases:

either fx (α) ∈ V or fx (α) ∈ ↑α
(
V ∩Xh(x)+β

)
. First, suppose that fx (α) ∈ V . Then

fx (α) ∈ V ⊆ X6h(x)+β,

where the last inclusion holds becauseV ∈ τh(x)+β . From from the above display and h (x)+β < α
it follows that h (fx (α)) 6 h (x) + β < α. By Lemma 4.6(v) we conclude that fx (h (x) + β) =
fx (α) ∈ V as desired. Then we consider the case where fx (α) ∈ ↑α

(
V ∩Xh(x)+β

)
. There exists

y ∈ V ∩Xh(x)+β such that y 6 fx (α). Since y 6 fx (α) and h (x) 6 h (y), we can apply Lemma
4.6(iii), obtaining y = fx (h (y)). As y ∈ Xh(x)+β and, therefore, h (y) = h (x) + β, we conclude
that fx (h (x) + β) = fx (h (y)) = y ∈ V . �

Now, recall that Sh(x)+β is a subbase for τh(x)+β and that V ∈ τh(x)+β . As fx (h (x) + β) ∈ V by
Claim 5.2, there exist W1, . . . ,Wn ∈ Sh(x)+β such that

fx (h (x) + β) ∈W1 ∩ · · · ∩Wn ⊆ V. (8)

Claim 5.3. There exist v 6 x, Y ∗ ⊆ω X>h(x) ∩ ↑h(x)+βv, and Z∗ ⊆ω X<h(x)+β ∩ ↑v such that

↑h(x)+βv r
(
↑h(x)+βY

∗ ∪ ↓Z∗
)
⊆W1 ∩ · · · ∩Wn ⊆ V

and h (v) is either zero or a successor ordinal.

Proof of the Claim. By applying the inductive hypothesis to W1, . . . ,Wn ∈ Sh(x)+β and condition
(8), we obtain that for every m 6 n there exist

vm 6 x, Ym ⊆ω X>h(x) ∩ ↑h(x)+βvm, and Zm ⊆ω X<h(x)+β ∩ ↑vm
such that

↑h(x)+βvm r
(
↑h(x)+βYm ∪ ↓Zm

)
⊆Wm (9)

and h (ym) is either zero or a successor ordinal. As X is a tree and v1, . . . , vn 6 x, the set
{vm : m 6 n} is a nonempty chain and, therefore, has a maximum v. Then, letting

Y ∗ := (Y1 ∪ · · · ∪ Yn) ∩ ↑v and Z∗ := (Z1 ∪ · · · ∪ Zm) ∩ ↑v,
we obtain

Y ∗ ⊆ω X>h(x) ∩ ↑h(x)+βv and Z∗ ⊆ω X<h(x)+β ∩ ↑v.
Furthermore, v 6 x and h (v) is either zero or a successor ordinal. Therefore, it only remains to
prove that

↑h(x)+βv r
(
↑h(x)+βY

∗ ∪ ↓Z∗
)
⊆W1 ∩ · · · ∩Wn ⊆ V.

SinceW1∩· · ·∩Wn ⊆ V by condition (8), it suffices to show that ↑h(x)+βvr
(
↑h(x)+βY

∗ ∪ ↓Z∗
)
⊆

W1 ∩ · · · ∩Wn. To this end, consider z ∈ ↑h(x)+βv r
(
↑h(x)+βY

∗ ∪ ↓Z∗
)

and m 6 n. We need
to show that z ∈ Wm. In view of condition (9), the definition of Y ∗ and Z∗, and vm 6 v, it
will be enough to show that z /∈ ↑h(x)+βYm ∪ ↓Zm. We begin by proving that z /∈ ↑h(x)+βYm.
Suppose the contrary, with a view to contradiction. Then h (z) 6 h (x) + β and there exists



14 DAMIANO FORNASIERE AND TOMMASO MORASCHINI

y ∈ Ym such that y 6 z. Since v 6 z and X is a tree, the elements v and y must be comparable.
We have two cases: either v 6 y or y < v. If v 6 y, then y ∈ Y ∗ because y ∈ Ym. Therefore,
z ∈ ↑h(x)+βY

∗, a contradiction with z ∈ ↑h(x)+βvr
(
↑h(x)+βY

∗ ∪ ↓Z∗
)
. Then we consider the case

where y < v. As v 6 x, this implies h (y) < h (x), a contradiction with y ∈ Ym ⊆ X>h(x). Hence,
we conclude that z /∈ ↑h(x)+βYm. Then we turn to prove that z /∈ ↓Zm. Suppose the contrary,
with a view to contradiction. Then there exists y ∈ Zm such that z 6 y. Since v 6 z, we obtain
v 6 y ∈ Zm. By the definition of Z∗ we obtain y ∈ Z∗ and, therefore, z ∈ ↓Z∗, a contradiction
with z ∈ ↑h(x)+βv r

(
↑h(x)+βY

∗ ∪ ↓Z∗
)
. This establishes the above display. �

Now, consider the sets
Y := Y ∗ ∪

(
Xα ∩ Z̄ ∩ ↑v

)
and Z := Z∗ ∪

(
Xh(x)+β ∩ ↓Z̄ ∩ ↑v

)
.

From Claim 5.3 it follows that v 6 x and that h (v) is either zero or a successor ordinal. Further-
more, as Z̄ and Y ∗ are finite (the latter by Claim 5.3), the set Y is also finite. Lastly, as X is a tree
and Z̄ is finite, ↓Z̄ is a union of finitely many chains. Therefore, Xh(x)+β ∩ ↓Z̄ is a finite set. As
Z∗ is finite by Claim 5.3, we conclude that Z is also finite. Therefore, it only remains to show that

Y ⊆ X>h(x) ∩ ↑αv, Z ⊆ X<α ∩ ↑v, and ↑αv r (↑αY ∪ ↓Z) ⊆ U.

By Claim 5.3 we have Y ∗ ⊆ X>h(x) ∩ ↑h(x)+βv ⊆ X>h(x) ∩ ↑αv and Z∗ ⊆ X<h(x)+β ∩ ↑v ⊆
X<α ∩ ↑v. Together with α = h (x) + β + 1 and the definition of Y and Z, this guarantees the
validity of the first two conditions in the above display. Therefore, it only remains to prove that
↑αv r (↑αY ∪ ↓Z) ⊆ U . By condition (7) this amounts to

↑αv r (↑αY ∪ ↓Z) ⊆
(
V ∪ ↑α

(
V ∩Xh(x)+β

))
r ↓Z̄. (10)

Consider z ∈ ↑αvr (↑αY ∪ ↓Z). Then v 6 z ∈ X6α and z /∈ ↑αY ∪ ↓Z. Since α = h (x) + β+ 1
and z ∈ X6α, we have two cases: either z ∈ X6h(x)+β or z ∈ Xα. First, suppose that z ∈ X6h(x)+β .
Then

z ∈
(
X6h(x)+β ∩ ↑αv

)
r (↑αY ∪ ↓Z) ⊆ ↑h(x)+βv r

(
↑h(x)+βY

∗ ∪ ↓Z∗
)
⊆ V,

where the first inclusion holds because Y ∗ ⊆ Y and Z∗ ⊆ Z, and the last by Claim 5.3. Therefore,
in order to conclude that z belongs to the right hand side of condition (10), it suffices to show
that z /∈ ↓Z̄. Suppose the contrary, with a view to contradiction. Then there exists y ∈ Z̄ such
that z 6 y. Since v 6 z ∈ X6h(x)+β and Z̄ ⊆ Ph(x)+β ∪ Sα, there exists y∗ ∈ Xh(x)+β such that
v 6 z 6 y∗ 6 y. Hence, y∗ ∈ Xh(x)+β ∩ ↓Z̄ ∩ ↑v ⊆ Z, where the last inclusion holds by the
definition of Z. Together with z 6 y∗, this implies z ∈ ↓Z, which is false.

Then we consider the case where z ∈ Xα. Let y be the unique element of Xh(x)+β ∩ ↓z. We
will prove that y ∈ V . By Claim 5.3 it suffices to show that

y ∈ ↑h(x)+βv r
(
↑h(x)+βY

∗ ∪ ↓Z∗
)
.

From z ∈ Xα, v 6 x, and h (x) < α it follows that h (v) < h (z). Since v 6 z, this implies v < z.
Moreover, as X is a tree, from v, y < z it follows that v and y are comparable. Since y is the
unique immediate predecessor of z by definition and v < z, we conclude that v 6 y. Hence,
y ∈ ↑h(x)+βv. Now, observe that y /∈ ↑Y ∗, otherwise we would have z ∈ ↑αY , a contradiction.
Moreover, observe that y /∈ ↓Z∗ because y ∈ Xh(x)+β and Z∗ ⊆ X<h(x)+β by Claim 5.3. This
establishes the above display and, therefore, that y ∈ V . Together with y 6 z, y ∈ Xh(x)+β , and
z ∈ Xα, this yields z ∈ ↑α

(
V ∩Xh(x)+β

)
. Therefore, in order to prove that z belongs to the right

hand side of condition (10), it only remains to show that z /∈ ↓Z̄. Suppose the contrary, with
a view of contradiction. Then there exists u ∈ Z̄ such that z 6 u. Together with z ∈ Xα and
u ∈ Z̄ ⊆ Ph(x)+β ∪ Sα, this implies z = u ∈ Z̄. Hence, z ∈ Xα ∩ Z̄ ∩ ↑v. By the definition of Y
this yields z ∈ ↑αY , a contradiction.
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Limit case. Finally, we consider the case where α− h (x) is a limit ordinal. In this case, α is also
a limit ordinal. Consequently, from U ∈ Sα it follows that U = V ∪ ↑α (V ∩Xβ) for some β < α
and V ∈ τβ . We have two cases: either β < h (x) or h (x) 6 β.

First, suppose that β < h (x). Then β < h (x) 6 h (fx (α)). Together with V ⊆ X6β (because
V ∈ τβ), this implies fx (α) /∈ V . On the other hand, fx (α) ∈ U = V ∪↑α (V ∩Xβ) by assumption.
Therefore, fx (α) ∈ ↑α (V ∩Xβ). Then there exists z ∈ V ∩Xβ such that z 6 fx (α). As X is a
tree, from x, z 6 fx (α) it follows that x and z are comparable. Since z ∈ Xβ and β < h (x), we
deduce that z < x. Thus,

↑αx ⊆ ↑αz ⊆ ↑α (V ∩Xβ) ⊆ U.
Now, let Y := ∅ and Z := ∅. Furthermore, if h (x) is zero or a successor ordinal, let v := x. While
if h (x) is a limit ordinal, recall that z < x and let v be any element strictly between z and xwhose
height is a successor ordinal. In both cases, we are done.

Then we consider the case where h (x) 6 β. We will prove that fx (β) ∈ V . Recall that fx (α) ∈
U = V ∪ ↑α (V ∩Xβ). Then we have two cases: either fx (α) ∈ V or fx (α) ∈ ↑α (V ∩Xβ). If
fx (α) ∈ V , from V ⊆ X6β it follows that h (fx (α)) 6 β. Together with β 6 α and Lemma 4.6(v),
this yields fx (β) = fx (α) ∈ V as desired. Then we consider the case where fx (α) ∈ ↑α (V ∩Xβ).
There exists z ∈ V such that h (z) = β and z 6 fx (α). By Lemma 4.5(iii) we have fx (β) = z ∈ V .
This establishes that fx (β) ∈ V as desired.

As Sβ is a subbase for the topology τβ , from fx (β) ∈ V ∈ τβ it follows that there exist
W1, . . . ,Wn ∈ Sβ such that fx (β) ∈ W1 ∩ · · · ∩Wn. Since h (x) 6 β < α, we have β − h (x) <
α− h (x). Therefore, we can apply the inductive hypothesis obtaining that for each m 6 n there
exist

vm 6 x, Ym ⊆ω X>h(x) ∩ ↑βvm, Zm ⊆ω X<β ∩ ↑vm
such that

↑βvm r (↑βYm ∪ ↓Zm) ⊆Wm

and h (vm) is either zero or a successor ordinal. As X is a tree and v1, . . . , vn 6 x, the set
{vm : m 6 n} is a nonempty chain and, therefore, has a maximum v. Then, letting

Y := (Y1 ∪ · · · ∪ Yn) ∩ ↑v and Z := (Z1 ∪ · · · ∪ Zm) ∩ ↑v,
we obtain

Y ⊆ω X>h(x) ∩ ↑βv and Z ⊆ω X<β ∩ ↑v. (11)
Furthermore,

↑βv r (↑βY ∪ ↓Z) ⊆W1 ∩ · · · ∩Wn ⊆ V (12)
and h (v) is either zero or a successor ordinal.

From condition (11) and β 6 α it follows that
Y ⊆ω X>h(x) ∩ ↑αv and Z ⊆ω X<α ∩ ↑v.

Since h (v) is either zero or a successor ordinal and U = V ∪↑α (V ∩Xβ), it only remains to show
that

↑αv r (↑αY ∪ ↓Z) ⊆ V ∪ ↑α (V ∩Xβ) .

To this end, let z ∈ X6α be such that v 6 z and z /∈ ↑αY ∪↓Z. We have two cases: either z ∈ X6β
or z /∈ X6β . In the former case, we have z ∈ ↑βv r (↑βY ∪ ↓Z). By condition (12) we conclude
that z ∈ V as desired. Then we consider the case where z /∈ X6β , i.e., h (z) > β. Let y be the
unique element of ↓z ∩Xβ . As X is a tree and v, y 6 z, we deduce that either y < v or v 6 y.
However, the former case cannot happen because y ∈ Xβ , v 6 x, and h (x) 6 β. Hence, v 6 y
and, therefore, y ∈ ↑βv. Moreover, y /∈ ↑βY because z /∈ ↑αY and y 6 z ∈ X6α. Lastly, y /∈ ↓Z
because y ∈ Xβ and Z ⊆ X<β . Therefore, y ∈ ↑βv r (↑βY ∪ ↓Z). From condition (12) it follows
that y ∈ V . Thus, y ∈ V ∩Xβ . Together with y 6 z ∈ X6α, this implies z ∈ ↑α (V ∩Xβ). �
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6. Compactness

The aim of this section is to prove the following.

Theorem 6.1. The topological space 〈X; τh(X)〉 is compact.

To this end, let C be an open covering of X . We need to show that C has a finite subcover. By
Alexander’s subbase theorem we may assume C ⊆ Sh(X). The construction of a finite subcover
proceeds through a series of technical observations.

Proposition 6.2. For every x ∈ X there exists Vx ⊆ω C such that ↓x ⊆
⋃
Vx.

Proof. We proceed by induction on h (x). If h (x) = 0, then x is the root ofX and the claim follows
from ↓x = {x}. If h (x) = α+1, there exists y ∈ Xα such that ↓x = {x}∪↓y. As h (y) = α < α+1,
by the inductive hypothesis there exists Vy ⊆ω C such that ↓y ⊆

⋃
Vy. Let U ∈ C be such that

x ∈ U . Letting Vx := Vy ∪ {U}, we conclude that Vx ⊆ω C and ↓x ⊆
⋃
Vx.

Finally, suppose that h (x) is a limit ordinal and consider U ∈ C such that x ∈ U . We begin
with the following observation.

Claim 6.3. There exists y < x such that [y, x] ⊆ U .

Proof of the Claim. We will prove that for every α 6 h (X),

if x ∈W for some W ∈ Sα, there exists y < x such that [y, x] ⊆W.

Since x ∈ U ∈ C ⊆ Sh(X) by assumption, Claim 6.3 follows immediately from the above display
in the case where α = h (X) and W = U .

We proceed by induction on α. The case where α = 0 is straightforward because the assump-
tion that h (x) is a limit ordinal guarantees that x /∈ X60 and, therefore, x /∈

⋃
S0. Then we

consider the case where α is a successor ordinal β + 1. Suppose that x ∈ W ∈ Sβ+1. Since
h (x) is a limit ordinal, we have x /∈ Xβ+1. Therefore, the definition of Sβ+1 and x ∈W ∈ Sβ+1

ensures that either W = ↓z for some z ∈ Pβ or W = V ∪ ↑6β+1 (V ∩Xβ) for some V ∈ τβ . First,
suppose that W = ↓z. As h (x) is a limit ordinal, there exists y < x. Since x ∈W = ↓z, we obtain
[y, x] ⊆ W as desired. Then we consider the case where W = V ∪ ↑6β+1 (V ∩Xβ) for some
V ∈ τβ . Together with x ∈ W rXβ+1, this yields x ∈ V . As V ∈ τβ and Sβ is a subbase for τβ ,
there exist V1, . . . , Vn ∈ Sβ such that x ∈ V1 ∩ · · · ∩ Vn = V ⊆W . Then the inductive hypothesis
ensures that there exist y1, . . . , yn < x such that [y1, x] ⊆ V1, . . . , [yn, x] ⊆ Vn. As y1, . . . , yn < x
and X is a tree, the set {y1, . . . , yn} is a nonempty chain and, therefore, has a maximum y. We
have y < x and [y, x] ⊆ V1 ∩ · · · ∩ Vn ⊆W as desired.

Lastly, we consider the case where α is a limit ordinal. Suppose that x ∈ W ∈ Sα. Then
W = V ∪ ↑ (V ∩Xβ) for some β < α and V ∈ τβ by the definition of Sα. Together with x ∈W ,
this yields x ∈ V ∪ ↑ (V ∩Xβ). If x ∈ ↑ (V ∩Xβ), there exists y ∈ V ∩ Xβ such that y < x.
Therefore, [y, x] ⊆ ↑ (V ∩Xβ) ⊆ W and we are done. Then we consider the case where x ∈ V .
Together with V ⊆ W , the assumption that V ∈ τβ and that Sβ is a subbase for τβ implies the
existence of V1, . . . , Vn ∈ Sβ such that x ∈ V1 ∩ · · · ∩ Vn = V ⊆W . Since β < α, we can apply the
inductive hypothesis obtaining y1, . . . , yn < x such that [y1, x] ⊆ V1, . . . , [yn, x] ⊆ Vn. As before,
letting y be the maximum of {y1, . . . , yn}, we obtain y < x and [y, x] ⊆ V1 ∩ · · · ∩ Vn ⊆W . �

By the Claim there exists y < x such that [y, x] ⊆ U . As h (y) < h (x), we can apply the
inductive hypothesis, obtaining that there exists Vy ⊆ω C such that ↓y ⊆

⋃
Vy. Therefore, letting

Vx := Vy ∪ {U}, we obtain that Vx ⊆ω C and ↓x = [y, x] ∪ ↓y ⊆
⋃
Vx. �

The heart of the compactness proof is the following observation.
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Proposition 6.4. For each ordinal α there exist Uα ⊆ω C and an antichain Fα ⊆ω X such that

X r ↑Fα ⊆
⋃
Uα and there are no x ∈ Fα, β < α, and y ∈ F β such that x < y. (13)

Furthermore, if α = β + 1, then Fα ⊆ ↑F β r F β .

For the sake of readability, we will postpone the proof of the above proposition to the end of
this section. Instead, we shall now explain how the above proposition can be used to prove that
C has a finite subcover.

Corollary 6.5. There exists an ordinal α such that for every ordinal γ > α it holds that F γ ⊆
⋃
β<γ F

β .

Proof. Suppose the contrary, i.e., that for every ordinal α there exists an ordinal α′ > α such that
Fα
′ 6⊆

⋃
β<α′ F

β . Then for each ordinal αwe define an ordinal α∗ as follows. First, we let 0∗ := 0′.
Then consider an ordinal α > 0 and assume that γ∗ has been defined for each γ < α. We let

α∗ := (sup ({α} ∪ {γ∗ : γ < α}) + 1)′ .

It is easy to see that for every pair of ordinals α < β we have α∗ < β∗ and that for each ordinal α,

α 6 α∗ and Fα
∗ 6⊆

⋃
β<α∗

F β. (14)

In view of the right hand side of the above display, for every ordinal α there exists

xα ∈ Fα
∗
r
⋃
β<α∗

F β.

We will prove that xα 6= xβ for each pair of distinct ordinals α and β. Suppose that α 6= β. By
symmetry we may assume α < β. As we mentioned, this implies α∗ < β∗. As xα ∈ Fα

∗ , we
obtain xα /∈ F β

∗ r
⋃
γ<β∗ F

β . Since xβ ∈ F β
∗ r

⋃
γ<β∗ F

β , we conclude that xα 6= xβ as desired.
Hence, {xα : α is an ordinal} is a proper class. But this contradicts the assumption that X is a
set containing each xα. �

We are now ready to show that C has a finite subcover. Suppose the contrary, with a view of
contradiction, i.e., that

there is no U ⊆ω C such that X ⊆
⋃
U . (15)

Recall from Corollary 6.5 that there exists an ordinal α such that

F γ ⊆
⋃
β<γ

F β for each ordinal γ > α.

We will show that the set Fα+1 is nonempty. Suppose the contrary, with a view to contradiction.
Then the left hand side of condition (13) yields X ⊆

⋃
Uα+1. Therefore, the finite family

U := Uα+1 contradicts condition (15). Hence, we conclude that Fα+1 6= ∅.
Then there exists y ∈ Fα+1. In view of the above display, there also exists β 6 α such that y ∈

F β . As α+ 1 is a successor ordinal, the last part of Proposition 6.4 implies y ∈ Fα+1 = ↑FαrFα.
Therefore, there exists x ∈ Fα such that x < y. Since F β is an antichain by Proposition 6.4 and
y ∈ F β , we obtain x /∈ F β . Together with x ∈ Fα, this yields α 6= β. Thus, from β 6 α it follows
that β < α. As x ∈ Fα, y ∈ F β , and x < y, this contradicts the right hand side of condition
(13). Hence, we conclude that C has a finite subcover as desired. Therefore, in order to establish
Theorem 6.1, it only remains to prove Proposition 6.4.
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Proof of Proposition 6.4. As C covers X , for each x ∈ X there exists Ux ∈ C such that fx (h (X)) ∈
Ux. Since C ⊆ Sh(X), we can apply the Main Lemma 5.1, obtaining vx ∈ X such that vx 6 x and
Yx ⊆ω ↑vx ∩X>h(x) and Zx ⊆ω X<h(X) ∩ ↑vx such that

↑vx r (↑Yx ∪ ↓Zx) ⊆ Ux. (16)
Furthermore, h (vx) is either zero or a successor ordinal. In addition, for each x ∈ X there exists
Vx ⊆ω C such that

↓x ⊆
⋃
Vx (17)

by Proposition 6.2. The objects vx, Ux, Yx, Zx, and Vx will be used repeatedly in the proof, which
proceeds by induction on α.

Base case. If α = 0, we let U0 := ∅ and define F 0 as the singleton containing the root of X . Then
X r ↑F 0 = X rX = ∅ ⊆

⋃
U0 and the other conditions in the statement of Proposition 6.4 are

clearly satisfied.

Successor case. Consider a successor ordinal α + 1. By the inductive hypothesis there exist
Uα ⊆ω C and an antichain Fα ⊆ω X satisfying condition (13). We let

Aα+1 :=
{
x : x ∈ Yy ∩ ↑y for some y ∈ Fα and there are no β 6 α and z ∈ F β s.t. x < z

}
;

Fα+1 := minAα+1;
Uα+1 := Uα ∪ {Ux : x ∈ Fα} ∪ {U : there exist y ∈ Fα and x ∈ Zy s.t. U ∈ Vx} .

As Fα is finite and so is Yy for each y ∈ Fα, the set Aα+1 is also finite. Consequently, Fα+1 is
a finite antichain. On the other hand, as Uα and Fα are finite and so is Zy for each y ∈ Fα as
well as Vx for each x ∈ Zy, the set Uα+1 is also finite. Furthermore, Uα+1 ⊆ C because Uα ⊆ C by
the inductive hypothesis and {Ux} ∪ Vx ⊆ C for each x ∈ X by assumption. Hence, Uα+1 ⊆ω C
and Fα+1 ⊆ω X , where Fα+1 is also an antichain. Therefore, it only remains to prove that Uα+1

and Fα+1 satisfy condition (13) and the last part of Proposition 6.4.

Claim 6.6. We have X r ↑Fα+1 ⊆
⋃
Uα+1.

Proof of the Claim. Let x ∈ X r ↑Fα+1. By the inductive hypothesis we have X r ↑Fα ⊆
⋃
Uα.

Therefore, if x /∈ ↑Fα, then x ∈ Xr↑Fα ⊆
⋃
Uα ⊆

⋃
Uα+1, where the last inclusion follows from

the assumption that Uα ⊆ Uα+1. Then we consider the case where x ∈ ↑Fα. There exists y ∈ Fα
such that y 6 x. We have two cases: either x ∈ ↓Zy or x /∈ ↓Zy. First, suppose that x ∈ ↓Zy. Then
there exists z ∈ Zy such that x 6 z. By condition (17) we have ↓z ⊆

⋃
Vz . Since x 6 z, this

yields x ∈
⋃
Vz . On the other hand, from z ∈ Zy and y ∈ Fα it follows that Vz ⊆ Uα+1. Hence,

x ∈
⋃
Uα+1 as desired. Then we consider the case where x /∈ ↓Zy. Again, we have two cases:

either x /∈ ↑Yy or x ∈ ↑Yy. First, suppose that x /∈ ↑Yy. Together with vy 6 y 6 x and x /∈ ↓Zy,
this yields x ∈ ↑vy r (↑Yy ∪ ↓Zy). By condition (16) this implies x ∈ Uy. Since y ∈ Fα, we have
Uy ∈ Uα+1 and, therefore, x ∈

⋃
Uα+1 as desired. It only remains to consider the case where

x ∈ ↑Yy. We will show that this cases never happens, in the sense that it leads to a contradiction.
First, as x ∈ ↑Yy, there exists z ∈ Yy such that z 6 x. We will prove that z ∈ Aα+1. Since X
is a tree and y, z 6 x, the elements y and z must be comparable. As Yy ⊆ X>h(y) and z ∈ Yy,
we deduce y < z. Therefore, z ∈ Yy ∩ ↑y and y ∈ Fα. Consequently, to prove that z ∈ Aα+1,
it only remains to show that there are no β 6 α and w ∈ F β such that z < w. Suppose, on
the contrary, that there exist such β and w. From y < z < w it follows that y < w. Recall that
β 6 α. Then either β < α or β = α. The case where β < α cannot happen because Fα satisfies
the right hand side of condition (13) and y ∈ Fα, w ∈ F β , and y < w. Therefore, we obtain
α = β. As a consequence, y, w ∈ Fα because y ∈ Fα and w ∈ F β . Together with y < w, this
contradicts the assumption that Fα is an antichain. Hence, we conclude that z ∈ Aα+1. Since the
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set Aα+1 is finite and Fα+1 = minAα+1, this yields z ∈ ↑Fα+1. As z 6 x, we obtain x ∈ ↑Fα+1,
a contradiction with the assumption that x ∈ X r ↑Fα+1. �

By the Claim 6.6 the set Fα+1 satisfies the left hand side of condition (13). The right hand
side of the same conditions holds by the definition of Fα+1. Therefore, it only remains to prove
the last part of Proposition 6.4, namely, that Fα+1 ⊆ ↑Fα r Fα. To this end, consider x ∈ Fα+1.
By the definition of Fα+1 we have x ∈ Yy ∩ ↑y for some y ∈ Fα. Therefore, x ∈ ↑Fα. It only
remains to prove that x /∈ Fα. From x ∈ Yy ⊆ X>h(y) and x > y it follows that x < y. As Fα is
an antichain containing y, this implies x /∈ Fα.

Limit case. For each nonempty Y ⊆ X let

sup∗Y := {x ∈ X : x is the supremum of a maximal chain Z ⊆ Y }.

Suppose that α is a limit ordinal. By the inductive hypothesis for each β < α there exist
Uβ ⊆ω C and an antichain F β ⊆ω X satisfying condition (13). We let

F :=
⋃
β<α

F β ∪
⋃
β<α

(
X r ↑F β

)
and F ∗ := ↓ (sup∗F ) .

Notice that F is nonempty because it contains the root of X (the latter belongs to F 0 by con-
struction and F 0 ⊆ F ). Therefore, every maximal chain in F is nonempty and, therefore, has a
supremum in X by assumption.

The proof relies on a series of technical observation.

Claim 6.7. The sets F and F ∗ are nonempty downsets of X .

Proof of the Claim. We begin by proving that F is a nonempty downset ofX . First, F is nonempty
because 0 < α and F 0 ⊆ F is the singleton containing the root ofX . To prove that F is a downset,
for every ordinal β < α let

Gβ := F β ∪
(
X r ↑F β

)
.

We show that each Gβ is a downset. Consider x ∈ Gβ and y < x. We need to prove that y ∈ Gβ .
There are two cases: either x ∈ F β or x ∈ X r ↑F β . Suppose that x ∈ F β . Then y cannot belong
to ↑F β , otherwise there exists z ∈ F β such that z 6 y < x. Since x, z ∈ F β , this contradicts the
assumption that F β is an antichain. Hence, y ∈ X r ↑F β ⊆ Gβ as desired. Then we consider the
case where x ∈ X r ↑F β . Since X r ↑F β is a downset and y 6 x, we obtain y ∈ X r ↑F β ⊆ Gβ
too. Hence, each Gβ is a downset. As F =

⋃
β<αG

β , we conclude that F is a downset. Lastly, F ∗
is a nonempty downset by definition. �

Claim 6.8. The poset 〈F ∗;6〉 is order compact and each of its nonempty chains has a supremum in F ∗.

Proof of the Claim. Recall that F ∗ is a nonempty downset of X by Claim 6.7. Together with the
assumption that X is a tree with enough gaps, this yields that F ∗ is also a tree with enough gaps.
We will show that each of its nonempty chains has a supremum in F ∗. Together with Theorem
4.1, this implies that X is representable and, therefore, order compact by Proposition 2.5. As
such, in order to conclude the proof, it suffices to show that in F ∗ each nonempty chain has a
supremum.

All suprema in the rest of the proof will be computed in X , unless said otherwise. Consider
a nonempty chain C = {xi : i ∈ I} in F ∗. We will prove that C has a supremum in the poset
〈F ∗;6〉. We begin by showing that

xi = sup (F ∩ ↓xi) for each i ∈ I. (18)
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Consider i ∈ I . If xi ∈ F , clearly xi = sup (F ∩ ↓xi) and we are done. Then consider the case
where xi /∈ F . Since xi ∈ F ∗ = ↓ (sup∗ F ), there exists y ∈ sup∗ F such that xi 6 y. Furthermore,
y = sup (F ∩ ↓y) because y ∈ sup∗ F . We have two cases: either xi = y or xi 6= y. If xi = y, we
have xi = y = sup (F ∩ ↓y) = sup (F ∩ ↓xi) and we are done. Then we consider the case where
xi 6= y. As xi 6 y, we have xi < y. Since y = sup (F ∩ ↓y), this guarantees the existence of
z ∈ F such that z 6 y and z 
 xi. As X is a tree and xi, z 6 y, the elements xi and z must be
comparable. Together with z 
 xi, this yields xi 6 z. Since z ∈ F and F is a downset by Claim
6.7, we obtain xi ∈ F , a contradiction. This establishes condition (18).

Then consider the set
D :=

⋃
i∈I

(F ∩ ↓xi) .

We will prove that D is a nonempty chain. First, recall that the root of X belongs to F 0 and,
therefore, to F by construction. Thus, D is nonempty. Then consider y, z ∈ D. By the definition
of D there exist i, j ∈ I such that y 6 xi and z 6 xj . Since C is a chain, by symmetry we may
assume that xi 6 xj . Therefore, y, z 6 xj . AsX is a tree, we conclude that y and z are comparable.
Hence, D is a nonempty chain as desired. Consequently, supD exists by the assumptions on X .
Together with the definitions ofC andD and with condition (18), this yields that also supC exists
and coincides with supD. Furthermore, the definition of D ensures that D ⊆ F . Since D can be
extended to a maximal chain in F by Zorn’s Lemma, we obtain supC = supD ∈ ↓ (sup∗ F ) = F ∗.
Thus, the supremum of C computed in X exists and belongs to F ∗. Clearly, this coincides with
the supremum of C computed in F ∗. Therefore, we conclude that C has a supremum also in the
poset 〈F ∗;6〉 as desired. �

Recall that for each x ∈ X we have vx 6 x and that h (x) is either zero or a successor ordinal.
Claim 6.9. For every x ∈ sup∗ F there exist an ordinal γx < α, an element yx ∈ X , an order open subset
Vx of 〈F ∗;6〉, andWx ⊆ω C satisfying the following conditions:

(i) vx 6 yx 6 x;
(ii) Vx is disjoint both from ↑ (F γx r ↑yx) and ↑Yx;
(iii) x ∈ Vx ⊆ Ux ∪

⋃
Wx ∪

⋃
Uγx .

Proof of the Claim. Consider x ∈ sup∗ F . We will prove that there exist
γx < α and yx ∈ F γx ∪ (X r ↑F γx) such that vx 6 yx 6 x. (19)

This will establish condition (i). Recall that x is the supremum of a maximal chain of 〈F ;6〉
because x ∈ sup∗ F . We have two cases: either h (x) is a limit ordinal or not. First, suppose that
h (x) is not a limit ordinal. Since x is the supremum of a nonempty chain of 〈F ;6〉, this yields
x ∈ F . Consequently, there exists γx < α such that x ∈ F γx ∪ (X r ↑F γx). Therefore, letting
yx := x, we are done. Then we consider the case where h (x) is a limit ordinal. As h (vx) is either
zero or a successor ordinal and vx 6 x, this yields vx < x. Since x is the supremum of chain of
〈F ;6〉, there exist γx < α and yx ∈ F γx ∪ (X r ↑F γx) such that yx 6 x and yx 
 vx. As X is a
tree and yx, vx 6 x, we deduce that either yx 6 vx or vx 6 yx. Together with yx 
 vx, this yields
vx 6 yx and establishes the above display.

Let
V ′x := ↑ (F γx r ↑yx) ∪ ↑Yx ∪ ↓ (Zx r ↑x) and Vx := F ∗ r V ′x.

Notice that Vx satisfies condition (ii) by definition. We will prove that Vx is an order open set of
the poset 〈F ∗;6〉. First, observe that Vx ⊆ F ∗ by the definition of Vx. Then consider the sets

A := F ∗ ∩ ((F γx r ↑yx) ∪ Yx) and B := max (F ∗ ∩ ↓ (Zx r ↑z)) .
We shall see that A,B ⊆ω F ∗. Since F γx and Yx are fine, we obtain A ⊆ω F ∗. On the other hand,
as X is a tree and Zx finite, the set ↓ (Zx r ↑z) is the union of n chains for some nonnegative
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integer n. Consequently, |B| 6 n and, therefore, B ⊆ω F ∗ as desired. From A,B ⊆ω F ∗ and
Lemma 2.7 it follows that F ∗ r (↑A ∪ ↓B) is an order open set of 〈F ∗;6〉.

To prove that Vx is also an order open set of 〈F ∗;6〉, we rely on the equalities
F ∗ ∩ (↑ (F γx r ↑yx) ∪ ↑Yx) = F ∗ ∩ ↑A and F ∗ ∩ ↓ (Zx r ↑x) = F ∗ ∩ ↓B. (20)

First, observe that
F ∗ ∩ (↑ (F γx r ↑yx) ∪ ↑Yx) = F ∗ ∩ ↑ ((F γx r ↑yx) ∪ Yx)

= F ∗ ∩ ↑ (F ∗ ∩ ((F γx r ↑yx) ∪ Yx))

= F ∗ ∩ ↑A,

where the first equality is straightforward, the second holds because F ∗ is a downset of X , and
the third holds by the definition of A. This establishes the left hand side of condition (20).
Then we turn to prove the right hand side of the same condition. The inclusion from right to
left is an immediate consequence of the definition of B. To prove the other inclusion, consider
z ∈ F ∗ ∩ ↓ (Zx r ↑x). By Zorn’s lemma there exists a maximal chain C ⊆ F ∗ ∩ ↓ (Zx r ↑x) such
that z ∈ C. Since C is a nonempty chain of F ∗, it has a supremum supC in 〈F ∗;6〉 by Claim
6.8. We will prove that supC ∈ F ∗ ∩ ↓ (Zx r ↑x). Since supC ∈ F ∗, it suffices to show that
supC ∈ F ∗ ∈ ↓ (Zx r ↑x). Recall that Zx is finite. Therefore, so is Zxr ↑x. Furthermore, Zxr ↑x
is nonempty because z ∈ ↓ (Zx r ↑x). Then consider an enumeration Zx r ↑x = {z1, . . . , zn}.
We will show that C ⊆ ↓zi for some i 6 n. Suppose the contrary, with a view to contradiction.
Then for each i 6 n there exists ci ∈ C such that ci 
 zi. As C is a chain, the set {c1, . . . , cn}
has a maximum c. Clearly, we have c 
 z1, . . . , zn, a contradiction with the assumption that
C ⊆ ↓ (Zx r ↑x). Hence, there exists i 6 n such that C ⊆ ↓zi. Consequently, supC 6 zi. Since
zi ∈ Zx r ↑x, we obtain supC ∈ ↓ (Zx r ↑x) as desired. From supC ∈ (F ∗ ∩ ↓ (Zx r ↑x)) and
the maximality of the chain C it follows that supC ∈ max (F ∗ ∩ ↓ (Zx r ↑x)) = B. Together with
z ∈ C, this yields z ∈ ↓B. As z ∈ F ∗, we conclude that z ∈ F ∗ ∩ ↓B, establishing condition (20).

Lastly, observe that
Vx = F ∗ r (↑ (F γx r ↑yx) ∪ ↑Yx ∪ ↓ (Zx r ↑x))

= F ∗ r ((F ∗ ∩ ↑ ((F γx r ↑yx) ∪ Yx)) ∪ (F ∗ ∩ ↓ (Zx r ↑x)))

= F ∗ r ((F ∗ ∩ ↑A) ∪ (F ∗ ∩ ↓B))

= F ∗ r (↑A ∪ ↓B) ,

where the first equality holds by the definition of Vx, the second and the last are straightforward,
and the third holds by condition (20). Therefore, since F ∗ r (↑A ∪ ↓B) is an order open set of
〈F ∗;6〉, we conclude that so is Vx.

Therefore, it only remains to constructWx ⊆ω C so that condition (iii) holds. Let
Wx := {U : U ∈ Vz for some z ∈ Zx}.

Since Zx is finite and Vz ⊆ω C for each z ∈ Zx, we obtain Wx ⊆ω C. Then we turn to prove
condition (iii).

We begin by showing that x ∈ Vx. Suppose the contrary, with a view to contradiction. Since
x ∈ sup∗ F ⊆ F ∗ by assumption, we obtain x ∈ F ∗rVx ⊆ V ′x. From the definition of V ′x it follows
that

either x ∈ ↑ (F γx r ↑yx) or x ∈ ↑Yx or x ∈ ↓ (Zx r ↑x) .

First, suppose x ∈ ↑ (F γx r ↑yx). Then there exists z ∈ F γx r ↑yx such that z 6 x. Since X is a
tree and yx, z 6 x (for yx 6 x, see condition (19)), we deduce that either z 6 yx or yx 6 z. As
z ∈ F γxr↑yx, this amounts to z < yx. In view of condition (19), either yx ∈ F γx or yx ∈ Xr↑F γx .
We will show that both cases lead to a contradiction. If yx ∈ F γx , we have yx, z ∈ F γx . Together



22 DAMIANO FORNASIERE AND TOMMASO MORASCHINI

with z < yx, this contradicts the assumption that F γx is an antichain. On the other hand, if
yx ∈ X r ↑F γx , we obtain a contradiction with z < yx and z ∈ F γx . Lastly, the case where
x ∈ ↑Yx leads to a contradiction because Yx ⊆ X>h(x), and the case x ∈ ↓ (Zx r ↑x) is obviously
impossible. Hence, we conclude that x ∈ Vx.

Therefore, to conclude the proof, it only remains to show that

Vx ⊆ Ux ∪
⋃
Wx ∪

⋃
Uγx .

Consider y ∈ Vx. There are two cases: either y ∈ ↓Zx or y /∈ ↓Zx. First, suppose that y ∈ ↓Zx.
Then there exists z ∈ Zx such that y 6 z. Therefore, Vz ⊆ Wx by the definition ofWx. From
condition (17) and y 6 z it follows that y ∈ ↓z ⊆

⋃
Vz ⊆

⋃
Wx as desired. Then we consider the

case where y /∈ ↓Zx. Again, we have two cases: either y /∈ ↑F γx or y ∈ ↑F γx . If y /∈ ↑F γx , we have
y ∈ X r ↑F γx . Therefore, the fact that Uγx and F γx satisfy condition (13) ensures that y ∈

⋃
Uγx

and we are done. Lastly, we consider the case where y ∈ ↑F γx . Since y ∈ Vx by assumption and
Vx ⊆ (↑Yx)c ∩ (↑ (F γx r ↑yx))c by the definition of Vx, we have y /∈ ↑Yx and y /∈ ↑ (F γx r ↑yx).
Together with y ∈ ↑F γx , the latter yields y ∈ ↑yx. Therefore, y ∈ ↑yx, y /∈ ↑Yx, and y /∈ ↓Zx. Since
vx 6 yx by condition (19), this yields y ∈ ↑vx r (↑Yx ∪ ↓Zx). By condition (16) we conclude that
y ∈ Ux as desired. �

Recall that Claim 6.9 associates a set Vx with every x ∈ sup∗ F . Using these sets, we obtain the
following:

Claim 6.10. There exist G ⊆ω sup∗ F and Γ ⊆ω α such that

F ∗ ⊆
⋃
x∈G

Vx ∪
⋃
β∈Γ

(
X r ↑F β

)
.

Proof of the Claim. First, we show that

F ∗ ⊆
⋃

x∈sup∗ F

Vx ∪
⋃
β<α

(
X r ↑F β

)
. (21)

To prove this, consider y ∈ F ∗ = ↓ (sup∗ F ). Then there exists x ∈ sup∗ F such that y 6 x. If y = x,
Claim 6.9(iii) ensures y ∈ Vy and we are done. Then we consider the case where y < x. Since x is
the supremum of a maximal chain of 〈F ;6〉, there exist β < α and z ∈ F β ∪

(
X r ↑F β

)
such that

z 6 x and z 
 y. As X is a tree and y, z 6 x, the elements y and z must be comparable. Together
with z 
 y, this yields y < z. We will prove that y /∈ ↑F β . Recall that z ∈ F β ∪

(
X r ↑F β

)
. We

will consider the cases where z ∈ F β and z ∈ X r ↑F β separately. First, suppose that z ∈ F β .
Since F β is an antichain containing z and y < z, we obtain y /∈ ↑F β as desired. On the other
hand, if z ∈ X r ↑F β , then y /∈ ↑F β because y < z. This concludes the proof that y /∈ ↑F β .
Therefore, y ∈ X r ↑F β with β < α, establishing the above display.

Now, observe that the following are order open sets of 〈F ∗;6〉:
(i) Vx for each x ∈ sup∗ F ;
(ii) F ∗ ∩

(
X r ↑F β

)
for each β < α.

The sets in condition (i) are order open by Claim 6.9. To prove that the sets in condition (ii)
are also order open, consider β < α. Since F ∗ is a downset of X , we have F ∗ ∩

(
X r ↑F β

)
=(

↑
(
F β ∩ F ∗

))c, where upsets and complements are computed in F ∗. Therefore, it suffices to
show that

(
↑
(
F β ∩ F ∗

))c is an order open set of 〈F ∗;6〉. The latter follows from Lemma 2.7 and
the fact that F β ∩ F ∗ is finite (because so is F β).

Since the sets in conditions (i) and (ii) are order open sets of 〈F ∗;6〉 and this poset is order
compact by Claim 6.8, from condition (21) it follows that there exist G ⊆ω sup∗ F and Γ ⊆ω α
satisfying the statement of the claim. �
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Using the setsG and Γ given by Claim 6.10 and the setsWx and the ordinals γx given by Claim
6.9, we let

Aα := {x : x ∈ Yy for some y ∈ G and there are no β < α and z ∈ F β s.t. x < z};
Fα := minAα;

Uα := {U : there are y ∈ G and x ∈ Zy s.t. U ∈ Vx} ∪ {U : U ∈ Wx for some x ∈ G}∪

{U : U ∈ Uγx for some x ∈ G} ∪
{
U : U ∈ Uβ for some β ∈ Γ

}
∪ {Ux : x ∈ G} .

Since G is finite by Claim 6.10 and so is Yy for each y ∈ G, the set Aα is also finite. Consequently,
Fα is a finite antichain. Moreover, Uα is finite because so are the sets of the form Zx, Vx,Wx, and
Uβ for each x ∈ X and β < α (for the case ofWx, see Claim 6.9) as well as the sets G and Γ by
Claim 6.10. Furthermore, Uα ⊆ C because Vx,Wx,Uβ, {Ux} ⊆ C for each x ∈ X and β < α (for
the case ofWx, see Claim 6.9). Hence, Uα ⊆ω C and Fα ⊆ω X , where Fα is also an antichain.

Observe that the last part of Proposition 6.4 holds vacuously because α is a limit ordinal.
Therefore, it only remains to prove condition (13). The right hand side of this condition holds
by the definition of Aα and the fact that Fα ⊆ Aα. Therefore, we turn to prove the left hand side
of condition (13), that is,

X r ↑Fα ⊆
⋃
Uα. (22)

Consider x ∈ X r ↑Fα. We have two cases: either x ∈ F ∗ or x /∈ F ∗. First, suppose that
x ∈ F ∗. By Claim 6.10

either x ∈ Vy for some y ∈ G or x ∈ X r ↑F β for some β ∈ Γ.

We begin with the case where x ∈ Vy for some y ∈ G. Since G ⊆ sup∗ F by Claim 6.10, we obtain
y ∈ sup∗ F . Hence, we can apply Claim 6.9(iii) and the assumption that x ∈ Vy, obtaining

x ∈ Vy ⊆ Uy ∪
⋃
Wy ∪

⋃
Uγy .

As y ∈ G, the definition of Uα guarantees that the right hand side of the above display is included
in
⋃
Uα. Hence, x ∈

⋃
Uα as desired. Then we consider the case where x ∈ X r ↑F β for some

β ∈ Γ. Since β ∈ Γ ⊆ α, we have β < α. Therefore, β satisfies condition (13). Consequently,
from x ∈ X r ↑F β it follows that x ∈

⋃
Uβ . As β ∈ Γ, the definition of Uα guarantees that

Uβ ⊆ Uα. Consequently,
⋃
Uβ ⊆

⋃
Uα. Since x ∈

⋃
Uβ , we obtain x ∈

⋃
Uα as desired. This

concludes the analysis of the case where x ∈ F ∗.
Therefore, we may assume that x ∈ X r F ∗. For future reference, it is useful to state the

following consequences of this assumption:

x ∈ ↑F β for every β < α and x /∈ sup∗F. (23)

Claim 6.11. There exist y∗ ∈ sup∗ F and z∗ ∈ G such that y∗ 6 x and y∗ ∈ Vz∗ .

Proof of the Claim. The left hand side of condition (23) guarantees that for each β < α there exists
yβ ∈ F β such that yβ 6 x. Since X is a tree and α a limit ordinal, the set C := {yβ : β < α} is a
nonempty chain in F . Since C is a chain and X a tree, the set

C∗ := F ∩ ↓C
is also a chain in F . Furthermore, from the definition of y∗ and C∗ it follows that y∗ = supC∗.
Therefore, in order to prove that y∗ ∈ sup∗ F , it suffices to show that the chain C∗ is maximal
in F . Suppose the contrary, with a view to contradiction. Then there exists w ∈ F r C∗ such
that C∗ ∪ {w} is still a chain. By the definition of F there exists β < α such that either w ∈ F β or
w ∈ Xr↑

(
F β
)
. First, suppose thatw ∈ F β . Sincew and yβ are distinct elements of C∗∪{w}, we

obtain that either w < yβ or yβ < w. Together with w, yβ ∈ F β , this contradicts the assumption
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that F β is an antichain. Then we consider the case where w ∈ X r ↑F β . Since yβ ∈ F β and w
and yβ are two elements of the chain C∗ ∪ {w}, this implies w < yβ . As yβ ∈ C and w ∈ F , we
conclude that w ∈ F ∩ ↓C = C∗, a contradiction. This establishes that the chain C∗ is maximal
in F and, therefore, y∗ ∈ sup∗ F .

It only remains to prove that y∗ ∈ Vz∗ for some z∗ ∈ G. To this end, observe that from
y∗ ∈ sup∗ F and Claim 6.10 it follows that

y∗ ∈ F ∗ ⊆
⋃
z∈G

Vz ∪
⋃
β∈Γ

(
X r ↑F β

)
.

Since yβ ∈ F β and yβ 6 y∗ for every β < α by construction and Γ ⊆ α, this yields y∗ ∈
⋃
z∈G Vz .

Therefore, there exists z∗ ∈ G such that y∗ ∈ Vz∗ . �

Now, let y∗ ∈ sup∗ F and z∗ ∈ G ⊆ sup∗ F be the elements given by Claim 6.11. Furthermore,
let yz∗ ∈ X be the element given by Claim 6.9. Lastly, recall that vz∗ is the element associated
with z∗ at the beginning of the proof of Proposition 6.4.

Claim 6.12. We have that vz∗ 6 x.

Proof of the Claim. By Claim 6.11 we have y∗ ∈ Vz∗ . Together with Claim 6.9(ii), this yields
y∗ /∈ ↑ (F γz∗ r ↑yz∗). On the other hand, x ∈ ↑F γz∗ by the left hand side of condition (23).
Therefore, there exists w ∈ F γz∗ such that w 6 x. Moreover, y∗ 6 x by Claim 6.11. Since
X is a tree, from y∗, w 6 x it follows that y∗ and w are comparable. Since y∗ ∈ sup∗ F , the
element y∗ is the supremum of a maximal chain C in F . From the maximality of C and the
assumption that w ∈ F γz∗ ⊆ F , it follows that y∗ < w is impossible (otherwise C ∪ {w}would
be a chain in F larger than C). Therefore, we conclude that w 6 y∗. Together with w ∈ F γz∗ and
y∗ /∈ ↑ (F γz∗ r ↑yz∗), this yields yz∗ 6 w. As w 6 x, we obtain yz∗ 6 x. Lastly, by Claim 6.9(i)
we have vz∗ 6 yz∗ and, therefore, vz∗ 6 x as desired. �

We are now ready to conclude the proof, i.e., we establish the left hand side of condition (22)
for x ∈ Xr↑Fα, x ∈ XrF ∗. We have two cases: either x ∈ ↓Zz∗ or x /∈ ↓Zz∗ . First, suppose that
x ∈ ↓Zz∗ . Then there exists w ∈ Zz∗ such that x 6 w. By condition (17) we have x ∈ ↓w ⊆

⋃
Vw.

Since w ∈ Zz∗ and z∗ ∈ G by Claim 6.11, we obtain Vw ⊆ Uα and, therefore, x ∈
⋃
Uα as desired.

Then we consider the case where x /∈ ↓Zz∗ . Again, we have two cases: either x /∈ ↑Yz∗ or x ∈ ↑Yz∗ .
First, suppose that x /∈ ↑Yz∗ . Together with Claim 6.12, this yields x ∈ ↑vz∗ r (↑Yz∗ ∪ ↓Zz∗). By
condition (16) this implies x ∈ Uz∗ . As z∗ ∈ G by Claim 6.11, the definition of Uα guarantees
that Uz∗ ∈ Uα. Consequently, x ∈ Uz∗ ⊆

⋃
Uα as desired.

Lastly, we consider the case where x ∈ ↑Yz∗ . We will show that this case never happens, i.e.,
that it leads to a contradiction. First, there exists w ∈ Yz∗ such that w 6 x. We will prove that
w ∈ Aα. Observe that w ∈ Yz∗ and z∗ ∈ G by Claim 6.11. Consequently, to prove that w ∈ Aα,
it only remains to show that there are no β < α and t ∈ F β such that w < t. Suppose, on the
contrary, that there exist such β and t. Recall that y∗ 6 x by Claim 6.11 and that w 6 x. Since
X is a tree, this yields that y∗ and w must be comparable. We have two cases: either y∗ < w or
w 6 y∗. First, suppose that y∗ < w. Together with w < t, this yields y∗ < t. Since y∗ ∈ sup∗ F
by Claim 6.11, we know that y∗ is the supremum of a maximal chain C in F . As y∗ < t and
t ∈ F β ⊆ F , we obtain a contradiction with the maximality of C. Then we consider the case
where w 6 y∗. As w ∈ Yz∗ , we obtain y∗ ∈ ↑Yz∗ . Recall that from Claim 6.11 that y∗ ∈ Vz∗ .
Together with y∗ ∈ ↑Yz∗ , this contradicts Claim 6.9(ii). Hence, we conclude that w ∈ Aα. As the
set Aα is finite and Fα = minAα, from w ∈ Aα and w 6 x it follows that x ∈ ↑Fα, contradicting
the assumption that x ∈ X r ↑Fα. This establishes the left hand side of condition (13), thus
concluding the argument. �
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7. Priestley separation axiom

The aim of this section is to prove the following.
Theorem 7.1. The ordered topological space 〈X;6, τh(X)〉 is a Priestley space.

In view of Theorem 6.1, the space 〈X; τh(X)〉 is compact. Therefore, to establish the above
theorem, it suffices to show that 〈X;6, τh(X)〉 satisfies Priestley separation axiom. The rest of
this section is devoted to this task.
Proposition 7.2. The ordered topological space 〈X;6, τh(X)〉 satisfies Priestley separation axiom.

Proof. We will prove that for every ordinal α and x, y ∈ X6α such that x 
 y there exists a clopen
upset of the ordered topological space 〈X6α;6, τα〉 such that x ∈ U and y /∈ U . The statement
will then follow immediately from the case where α = h (X). During the proof, we will often
use X6α as a shorthand for 〈X6α;6, τα〉. The proof proceeds by induction on α.

Base case. The case where α = 0 is straightforward because X6α is the singleton containing the
root of X .

Successor case. Suppose that the statement holds for an ordinal α and consider x, y ∈ X6α+1

such that x 
 y. Then for each z ∈ {x, y} ⊆ X6α+1 let

z̄ :=

{
z if z ∈ X6α;

the immediate predecessor of z if z ∈ Xα+1.

Clearly, z̄ 6 z and z ∈ X6α. We have two cases: either x̄ 
 ȳ or x̄ 6 ȳ.
First, suppose that x̄ 
 ȳ. Since x̄, ȳ ∈ X6α and x̄ 
 ȳ, we can apply the inductive hypothesis

obtaining a clopen upset V of X6α such that x̄ ∈ V and ȳ /∈ V . Then let
U := V ∪ ↑α+1 (V ∩Xα) .

We will prove that U is a clopen upset of X6α+1. From the assumption that V is an upset of
X6α it follows that U is an upset of X6α+1. Furthermore, the fact that V is an open set of X6α
and the definition of Sα+1 guarantee that U is an open set of X6α+1. Therefore, it only remains
to show that U is a closed set of X6α+1. Since V is an upset of X6α and X a tree, we have

X r (V ∪ ↑ (V ∩Xα)) = (X6α r V ) ∪ ↑ (Xα r V ) .

Using the definition of U and restricting to X6α+1 both sides of the above equality, we obtain
X6α+1 r U = X6α+1 r

(
V ∪ ↑α+1 (V ∩Xα)

)
= (X6α r V ) ∪ ↑α+1 ((X6α r V ) ∩Xα) .

As X6α r V ∈ τα by assumption, the definition of Sα+1 guarantees that the right hand side of
the above display is an open set of X6α+1. Hence, U is a closed set of X6α+1. This establishes
that U is a clopen upset of X6α+1.

Therefore, it only remains to prove that x ∈ U and y /∈ U . Recall that x̄ ∈ V and x̄ 6 x ∈
X6α+1. As U is an upset of X6α+1 containing V , we obtain x ∈ U . To prove that y /∈ U , we
consider separately two cases: either y ∈ X6α or y ∈ Xα+1. First suppose that y ∈ X6α. Then
y = ȳ. As ȳ /∈ V by assumption, we also have y /∈ V . Together with y ∈ X6α, this yields
y /∈ V ∪ ↑α+1 (V ∩Xα) = U as desired. Then we consider the case where y ∈ Xα+1. We have
y /∈ V because V ⊆ X6α. Moreover, y /∈ ↑α+1 (V ∩Xα) because ȳ, which is the only predecessor
of y of height α, does not belong to V by assumption. Hence, we conclude that y /∈ U .

It only remains to consider the case where x̄ 6 ȳ. As ȳ 6 y and x 
 y, we have x̄ 6= x. By the
definition of x̄ this implies x ∈ Xα+1 and x̄ ∈ Xα. Therefore, from x̄ 6 ȳ ∈ X6α it follows that
x̄ = ȳ. Hence, ȳ = x̄ ∈ Xα. We have three subcases:

either y ∈ Pα or y ∈ Sα+1 or y /∈ Pα ∪ Sα+1.
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Suppose first that y ∈ Pα. We will prove that ↓y is a clopen set of X6α+1. Since y ∈ Pα, the
definition of Sα+1 guarantees that ↓y is an open set of X6α+1. By the same token the set

(X6α ∪ ↑α+1 (X6α ∩Xα))r ↓y
is also an open of X6α+1, which is easily seen to coincide with X6α+1 r ↓y. Therefore, ↓y is
a clopen set of X6α+1. Together with x 
 y, this implies that X6α+1 r ↓y is a clopen upset of
X6α+1 containing x but not y and we are done.

Then we consider the case where y ∈ Sα+1. As before, it suffices to show that ↓y is a clopen
set of X6α+1. The fact that ↓y is closed is proved as in the previous case. To prove that it is
open, observe that ȳ ∈ Pα because y ∈ Sα+1. From the definition of Sα+1 and the assumption
that y ∈ Sα+1 and ȳ ∈ Pα it follows that both {y} and ↓ȳ are open sets of X6α+1. Therefore,
↓y = {y} ∪ ↓ȳ is an open set of X6α+1 as desired.

Lastly, we consider the case where y /∈ Pα ∪ Sα+1. We will prove that x ∈ Sα+1. Suppose the
contrary, with a view to contradiction. As x ∈ Xα+1 and x̄ ∈ Xα, from x /∈ Sα+1 it follows that
x = x̄+. Moreover, from ȳ = x̄ ∈ Xα and ȳ 6 y ∈ X6α+1 it follows that either y ∈ {ȳ, ȳ+}∪Sα+1.
As y /∈ Sα+1 by assumption, we get y ∈ {ȳ, ȳ+}. Moreover, from ȳ = x̄ < x and ȳ ∈ Xα it follows
that ȳ ∈ Pα. Together with y ∈ {ȳ, ȳ+} and the assumption that y /∈ Pα, this yields y = ȳ+.
Since x̄ = ȳ and x̄+ = x, we obtain y = x, a contradiction with x 
 y. Hence, we conclude that
x ∈ Sα+1.

We will use this fact to prove that {x} is a clopen upset of X6α+1 containing x but not y. As
x 
 y and x is a maximal element of X6α+1 (the latter because x ∈ Xα+1), it suffices to show
that {x} is a clopen set of X6α+1. Since x ∈ Sα+1, the definition of Sα+1 guarantees that {x} is
an open set of X6α+1. To prove that it is also closed, observe that

X6α+1 r {x} = ((X6α ∪ ↑α+1 (X6α ∩Xα))r ↓x) ∪ ↓x̄
because x ∈ Xα+1 and x̄ is the unique immediate predecessor of x. Furthermore, as x̄ ∈ Pα and
x ∈ Sα+1, the right hand side of the above display is the union of two members of Sα+1. Hence,
{x} is a closed set of X6α+1 as desired.

Limit case. Suppose that α is a limit ordinal and consider x, y ∈ X6α such that x 
 y. We will
prove that there exist β < α and x∗ ∈ X6β such that x∗ 6 x and x∗ 
 y. If x ∈ X<α, we are done
letting x∗ := x and β := h (x). Then we consider the case where x ∈ Xα. Since α is a limit ordinal
and every nonempty chain inX has a supremum, from x ∈ Xα it follows that x is the supremum
of the nonempty chain ↓xr {x}. As x 
 y, this implies that there exists x∗ ∈ ↓xr {x} such that
x∗ 
 y. Letting β := h (x∗) and observing that β < α, we are done.

Now, consider the nonempty chain C := X6β ∩ ↓y. By assumption the supremum y∗ of C
exists and, moreover, belongs to X6β because C ⊆ X6β . Since x∗ 
 y and y∗ 6 y, we have
x∗ 
 y∗. Recall that β < α. As x∗, y∗ ∈ X6β and x∗ 
 y∗, the inductive hypothesis guarantees
the existence of a clopen upset U of X6β such that x∗ ∈ U and y∗ /∈ U . Since α is a limit ordinal,
the definition of Sα ensures that both

U ∪ ↑α (U ∩Xβ) and (X6β r U) ∪ ↑α (Xβ r U)

are open sets of X6α. As U is an upset of X6β , the set on the left hand side of the above display
coincides with ↑αU . Similarly, the set of the right hand side of the display is X6α r ↑αU because
X is a tree and U an upset of X6β . Therefore, ↑αU is a clopen upset of X6α.

Lastly, from x∗ ∈ U and x∗ 6 x ∈ X6α it follows that x ∈ ↑αU . Therefore, it only remains
to prove that y /∈ ↑αU . Since ↑αU = U ∪ ↑α (U ∩Xβ), it suffices to show that y /∈ U and
y /∈ ↑α (U ∩Xβ). Suppose the contrary, with a view to contradiction. We have two cases: either
y ∈ U or y ∈ ↑α (U ∩Xβ). First, suppose that y ∈ U . Then y = y∗ because y ∈ U ⊆ X6β and y∗
is the supremum of ↓y ∩X6β . But this implies y∗ = y ∈ U , which is false. Then we consider the
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case where y ∈ ↑α (U ∩Xβ). The definition of y∗ guarantees that y∗ ∈ U ∩Xβ , a contradiction
with y∗ /∈ U . Hence, we conclude that y /∈ ↑αU . �

8. The end

In order to conclude the proof of Theorem 4.3, we need to show that 〈X;6, τh(X)〉 is an Esakia
space. As 〈X;6, τh(X)〉 is a Priestley space by Theorem 7.1, it only remains to prove that the
downset of every open set is still open. Therefore, the following observation concludes the proof
of Theorem 4.3.

Proposition 8.1. For every U ∈ τh(X) we have ↓U ∈ τh(X).

Proof. The proof hinges on the following claim:

Claim 8.2. Let α be an ordinal and x ∈ X6α rmaxX6α. Then ↓x ∈ Sα.

Proof of the Claim. The proof of the claim proceeds by induction on α.

Base case. The case where α = 0 holds vacuously because X60 rmaxX60 = ∅ and, therefore,
x ∈ X60 rmaxX60 is impossible.

Successor case. Suppose that x ∈ X6α+1rmaxX6α+1. We have two cases: either x ∈ maxX6α
or x /∈ maxX6α. First, suppose that x ∈ maxX6α. Since x /∈ maxX6α+1, this implies x ∈ Pα.
Consequently, ↓x ∈ Sα+1 by the definition of Sα+1. Then we consider the case where x /∈
maxX6α. Together with the assumption that x ∈ X6α+1 r maxX6α+1, this yields x ∈ X<α.
As x /∈ maxX6α, we can infer x ∈ X6α rmaxX6α. Consequently, we can apply the inductive
hypothesis, obtaining ↓x ∈ Sα. By the definition of Sα+1 we have

↓x ∪ ↑α+1(Xα ∩ ↓x) ∈ Sα+1.

Furthermore, from x ∈ X<α it follows that Xα ∩ ↓x = ∅. Therefore, the above display simplifies
to ↓x ∈ Sα+1 and we are done.

Limit case. Let x ∈ X6α rmaxX6α and assume that α is a limit ordinal. As x /∈ maxX6α, we
have h (x) < α. We will prove that

x ∈ X6h(x)+1 rmaxX6h(x)+1.

It is clear that x ∈ X6h(x)+1. Therefore, it suffices to prove that x /∈ maxX6h(x)+1. Suppose the
contrary, with a view to contradiction. From x ∈ maxX6h(x)+1 and the fact that x has order
type h (x) it follows that x is a maximal element of X . Together with h (x) 6 α, this yields
x ∈ maxX6α, a contradiction. This establishes the above display.

Recall that h (x) < α. Since α is a limit ordinal, this yields h (x) + 1 < α. Therefore, we can
apply the inductive hypothesis to the above display, obtaining ↓x ∈ Sh(x)+1. Since α is a limit
ordinal, the definition of Sα guarantees that

↓x ∪ ↑α(Xh(x)+1 ∩ ↓x) ∈ Sα.
As ↓x ⊆ X6h(x), we haveXh(x)+1∩↓x = ∅. Therefore, the above display simplifies to ↓x ∈ Sα. �

Now, we turn to prove the main statement. Let U ∈ τh(X). Clearly, we have

↓U = U ∪
⋃
{↓w : w ∈ ↓U : w /∈ maxX}.

As U ∈ τh(X) by assumption and ↓w ∈ τh(X) for each w /∈ maxX by Claim 8.2, the right hand
side of the above display belongs to the topology τh(X). Hence, we conclude that ↓U ∈ τh(X). �
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