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ABSTRACT. The logics RŁ, RP, and RG have been obtained by expanding Łukasiewicz
logic Ł, product logic P, and Gödel–Dummett logic G with rational constants. We
study the lattices of extensions and structural completeness of these three expan-
sions, obtaining results that stand in contrast to the known situation in Ł, P, and G.
Namely, RŁ is hereditarily structurally complete. RP is algebraized by the variety
of rational product algebras that we show to be Q-universal. We provide a base of
admissible rules in RP, show their decidability, and characterize passive structural
completeness for extensions of RP. Furthermore, structural completeness, hereditary
structural completeness, and active structural completeness coincide for extensions
of RP, and this is also the case for extensions of RG, where in turn passive structural
completeness is characterized by the equivalent algebraic semantics having the joint
embedding property. For nontrivial axiomatic extensions of RG we provide a base of
admissible rules. We leave the problem open whether the variety of rational Gödel
algebras is Q-universal.

1. INTRODUCTION

This work brings together two lines of research: admissible rules and lattices of
extensions of logics on the one side, and propositional fuzzy logic with constants for
rational numbers on the other. Either of these lines is native to nonclassical logics
and trivializes in the classical case.

In the realm of admissibility, it is common to identify logics with finitary substitu-
tion invariant consequence relations ` on the set of formulas of some algebraic lan-
guage. Formulas ϕ such that ∅ ` ϕ are then called theorems of `. A rule γ1, . . . , γn � ϕ
is derivable in a logic ` when γ1, . . . , γn ` ϕ. It is admissible in ` provided that the
set of theorems of ` is closed under that rule. The derivability of a rule entails its
admissibility in `, but the converse fails in general. Indeed, the structural completion
of a logic ` is the only logic whose derivable rules are precisely the rules that are
admissible in `. Because of this, questions typically asked about derivability, such
as finding an axiomatization or settling decidability, pertain also to admissibility.
In a structurally complete logic, the set of admissible rules coincides with the set of
derivable rules, and a logic is called hereditarily structurally complete if the property
of structural completeness is shared by all of its extensions.
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Research in structural completeness is well established in intermediate and tran-
sitive modal logics. Landmarks include the work of Rybakov on decidability of
admissible rules, covered in the monograph [75], Ghilardi’s investigation of the
relationship of admissibility to unification [33], and Iemhoff’s construction of explicit
bases for the rules admissible in the intuitionistic logic [53], independently discov-
ered by Rozière [73]. Hereditarily structurally complete logics have been described
in the realm of intermediate logics by Citkin [18, 19], see also [7, 20], and by Rybakov
in that of transitive modal logics [74] (see also [26]). Structural completeness is lan-
guage sensitive: the pure implication fragment of the intuitionisitc logic has been
known to be hereditarily structurally complete due to Prucnal’s work [70], yet the
implication-negation fragment is incomplete [16].

During the last two decades, research in structural completeness has turned also to
the family of fuzzy logics. Three logics of interest in this paper — Łukasiewicz logic
Ł, product logic P, and Gödel–Dummett logic G — can be obtained as axiomatic ex-
tensions of Hájek’s basic logic BL [45], even if they were defined independently prior
to the definition of BL. Łukasiewicz logic was first introduced in [59]. Finite-valued
semantics for Gödel–Dummett logic1 was considered in Gödel’s analysis of intuition-
istic logic [40], while Dummett provided an axiomatization of the infinite-valued
case in [22]. Product logic first appeared in [48]; see also [45]. All logics in the BL
family are algebraizable in the sense of Blok and Pigozzi [8]: the equivalent algebraic
semantics of the three logics are the varieties of MV-algebras, product algebras, and
Gödel algebras respectively. MV-algebras and product algebras each have a specific
tight connection to lattice-ordered abelian groups, while Gödel algebras coincide
with Heyting algebras in which the equation (x → y) ∨ (y→ x) ≈ 1 holds.

While G and P are hereditarily structurally complete [25, 14], Ł is structurally
incomplete [23] and a base for its admissible rules was exhibited by Jeřábek [55], see
also [54, 56]. Admissibility in extensions of Ł was investigated in [35, 36].2 Finally,
works addressing variants of structural completeness, such as active and passive rules
also studied in this paper, include [24, 37, 62, 63, 71, 80].

The aim of this paper is to take this line of research further and look at structural
completeness for expansions of Łukasiewicz, product, and Gödel logic with rational
constants. The pedigree of these logics goes back to the pioneering works of Goguen
[41] and Pavelka [66, 67, 68]. Expanding the language with constants can be viewed
as taking advantage of the rich algebraic setting to gain more expressivity; see, e.g.,
[4, 15, 28, 31, 50, 78].

More specifically, while the logics live in an ambience of many truth values, they
formally derive only statements that are fully true. It has been established by Goguen
and Pavelka that if constants with suitable axioms are added to a logic such as Ł, one
can walk around this limitation by employing formulas of the form c → ϕ, with c
a constant and ϕ any formula of the language: assignments sending c → ϕ to the
top element are precisely those that send ϕ in the upset of the value of c. Via this

1Henceforth we write just Gödel logic, as is common in the referenced literature.
2More generally, results on logics without weakening have been obtained in [65, 72] .
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simple hedging device, the existing deductive machinery of the logic (still ostensibly
focused on fully true statements) enables deduction on graded statements.

The version of Ł with rational constants in [46, 45] has become known as rational
Pavelka logic. Here we refer to this logic as rational Łukasiewicz logic (RŁ) to have
uniform names over all three expansions, the other two being rational product logic RP
and rational Gödel logic RG [27, 30, 47, 76]. These logics are algebraized, respectively,
by the varieties of rational MV-algebras, rational product algebras, and rational Gödel
algebras.

For each of the three logics, we provide information on the lattice of its extensions
and identify the structurally complete ones. The following striking reversal in the
lattice structure of extensions instantiates the already mentioned language sensitivity
of the notions studied in this paper. While Ł is known to be structurally incomplete
and the lattice of its extensions is dually isomorphic to lattice of quasivarieties of
the Q-universal variety of MV-algebras [1]3, RŁ is hereditarily structurally complete,
there being no consistent extensions. On the other hand, the lattice of extensions
of RP is dually isomorphic to the lattice of subquasivarieties of rational product
algebras, which we show to be Q-universal, and the only structurally complete
extensions are the logic of the rational product algebra on the rationals in [0, 1] with
the natural order and the three proper axiomatic extensions of RP term-equivalent to
the extensions of P. This contrasts with the known situation in P, which is hereditarily
structurally complete and whose lattice of extensions is a three-element chain. Lastly,
while G is hereditarily structurally complete and has denumerably many extensions,
RG is structurally incomplete and has a continuum of axiomatic extensions.

The paper is structured as follows. Sections 2, 3, and 4 review the rudiments of the
theory of quasivarieties, structural completeness, and fuzzy logics respectively. Sec-
tion 5 establishes the Q-universality of the class of rational product algebras. Section
6 is dedicated to structural completeness results in extensions of RP; in particular,
Theorem 6.1 provides a base of rules admissible in RP, while Corollary 6.3 establishes
their decidability. Theorem 6.4 characterizes structurally complete extensions of RP;
it turns out that structural completeness, active structural completeness, and heredi-
tary structural completeness coincide for extensions of RP (Corollaries 6.5 and 6.6).
Corollary 6.7 offers a characterization of passively structurally complete extensions.
Section 7 studies the lattice of extensions of RG: by Corollary 7.4, already the lattice
of axiomatic extensions of RG is an uncountable chain. The lattice of RG-extensions
is also easily seen to have uncountable antichains; but we do not know whether the
class of rational Gödel algebras might be Q-universal. Section 8 studies structural
completeness in RG; for extensions of this logic, structural completeness, hereditary
structural completeness, and active structural completeness coincide with the ex-
tension being algebraized by a quasivariety generated by a chain in RGA (Theorem
8.2); moreover, all such rational Gödel chains are characterized. Passive structural
completeness for RG-extensions is characterized in terms of being algebraized by
a quasivariety having the joint embedding property (Theorem 8.1). Theorem 8.4

3Even if the class of MV-algebras is Q-universal, insights into the structure of quasivarieties
generated by MV-chains were provided in [34, 38, 39].
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provides a base of admissible rules in any nontrivial axiomatic extension of RG.
Finally, Theorem 9.1 in section 9 shows that RŁ lacks proper consistent extensions
and, therefore, is hereditarily structurally complete.

2. VARIETIES AND QUASIVARIETIES

A quasivariety is a class of algebras that can be axiomatized by quasiequations, i.e.,
sentences of the form

∀~x((ϕ1 ≈ ψ1 ∧∧ . . .∧∧ ϕn ≈ ψn) =⇒ ϕ ≈ ψ).

We admit the case where the antecedent of the above implication is empty, whence
universally quantified equations are special cases of quasiequations. Similarly, a vari-
ety is a class of algebras that can be axiomatized by universally quantified equations,
while a universal class is one that can be axiomatized by universally quantified open
formulas. It is common to drop the universal quantifiers in the prefix and work with
open formulas.

For a general introduction to the theory of these classes we refer the reader to
[6, 10, 42] and, in what follows, we shall review some fundamental material only.
Varieties, quasivarieties and universal classes can be characterized in terms of model-
theoretic constructions. Let I,H,S,P, and PU be the class operators of closure under
isomorphism, homomorphic images, subalgebras, direct products, and ultraproducts
respectively. We assume direct products and ultraproducts of empty families of
algebras are trivial algebras. Then, a class of similar algebras K is a variety precisely
when it is closed under H,S, and P [10, Thm. I.11.9], it is a quasivariety precisely
when it is closed under I,S,P, and PU [10, Thm. V.2.25] (see also [77, Cor. 2.4]), and it is
a universal class precisely when it is closed under I, S and PU [10, Thm. V.2.20]. Given
a class of similar algebras K, the smallest variety and quasivariety containing K will
be denoted by V(K) and Q(K), respectively. It turns out that V(K) = HSP(K) and
Q(K) = ISPPU(K). Moreover, the smallest universal class containing K is ISPU(K).

A finite partial subalgebra C of an algebra A is a finite subset C of A endowed with
the restriction of finitely many basic operations of A. Given two similar algebras
A and B, a finite partial subalgebra C of A is said to embed into B if there exists an
injective map h : C → B such that for every basic n-ary partial operation f of C and
c1, . . . , cn ∈ C such that f A(c1, . . . , cn) ∈ C, we have

h( f A(c1, . . . , cn)) = f B(h(c1), . . . , h(cn)).

In this case, we say that h is an embedding of C into B. When every finite partial subal-
gebra of A embeds into B, we say that A partially embeds into B. Partial embeddability
is strictly connected with universal classes, because an algebra A partially embeds
into an algebra B if an only if A validates the universal theory of B.

Consider a quasivariety K and an algebra A ∈ K. A congruence θ of A is said to be
a K-congruence if A/θ ∈ K. When ordered under inclusion, the set of K-congruences
of A is an algebraic lattice, which we denote by ConKA. On the other hand, the
lattice of all congruences of A will be denoted by Con A. A congruence of A is said
to be nontrivial if it differs form the total relation A× A and the identity relation IdA.
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The kernel of a homomorphism f will be denoted by Ker( f ). Given a, c ∈ A, the
K-congruence of A generated by 〈a, c〉 is denoted by CgA

K(a, c).
Given a quasivariety K, an algebra A ∈ K is said to be relatively subdirectly irreducible

(resp. relatively finitely subdirectly irreducible) in K if IdA is completely meet-irreducible
(resp. meet-irreducible) in ConKA. When K is a variety, ConKA = Con A and A is
said to be simply subdirectly irreducible (resp. finitely subdirectly irreducible). The class of
algebras that are relatively subdirectly irreducible (resp. relatively finitely subdirectly
irreducible) in K will be denoted by KRSI (resp. KRFSI). It is well known that every
member of a quasivariety K is isomorphic to a subdirect product of algebras in KRSI
[42, Thm. 3.1.1]. Accordingly, to prove that two quasivarieties K and K′ are equal, it
suffices to show that KRSI = K′RSI.

Given a quasivariety K, we denote by Q(K) the lattice of subquasivarieties of K.
On the other hand, a class V ⊆ K is said to be a relative subvariety of K if it can be
axiomatized by equations relative to K. The lattice of relative subvarieties of K will be
denoted by V(K). Notice that, when K is a variety, V(K) is the lattice of subvarieties
of K. A quasivariety K is said to be primitive when all its subquasivarieties are relative
subvarieties.

Theorem 2.1 ([42, Prop. 5.1.22]). If K is a primitive quasivariety, then Q(K) is a distribu-
tive lattice.

A quasivariety K has the joint embedding property (JEP) when every two nontrivial
members A and B of K can be embedded into a common C ∈ K. While every variety
is generated by its denumerably generated free algebra, it is not true that every
variety is generated by a single algebra as a quasivariety. This makes the next result
from [61] interesting in the context of varieties as well.

Proposition 2.2 ([42, Prop. 2.1.19]). A quasivariety has the JEP if and only if it is generated
by a single algebra as a quasivariety.

Finally, a quasivariety K is said to be Q-universal if Q(M) ∈ HS(Q(K)), for every
quasivariety M in a finite language.4 As lattices of quasivarieties in a finite language
may be uncountable and need not validate any nontrivial lattice equation [43, 79],
the next result follows.

Proposition 2.3. If K is a Q-universal quasivariety, then Q(K) is uncountable and does
not validate any nontrivial lattice equation.

3. STRUCTURAL COMPLETENESS

Let Var = {xn : n ∈ ω} be a denumerable set of variables. Given an algebraic
language L , we denote by FmL the set of formulas of L with variables in Var. When
L is clear from the context, we shall write Fm instead of FmL . A (propositional) logic
` is then a consequence relation on the set of formulas Fm of some algebraic language

4The usual definition of a Q-universal quasivariety K demands that K has finite language. In
this paper we drop this requirement, because we deal with quasivarieties whose language is always
infinite.
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that, moreover, is substitution invariant in the sense that for every substitution σ on
Fm and every Γ ∪ {ϕ} ⊆ Fm,

if Γ ` ϕ, then σ[Γ] ` σ(ϕ).

Furthermore, in this paper logics ` are assumed to be finitary, i.e., such that

if Γ ` ϕ, then ∆ ` ϕ for some finite ∆ ⊆ Γ.

Given two logics ` and `′ such that the language of `′ extends that of `, we say
that `′ is an expansion of ` if, for every set of formulas Γ ∪ {ϕ} in the language of `,

Γ ` ϕ⇐⇒ Γ `′ ϕ.

Similarly, given two logics ` and `′ in the same language, `′ is said to be an extension
of ` when Γ `′ ϕ, for every Γ ∪ {ϕ} ⊆ Fm such that Γ ` ϕ. An extension `′ of ` is
said to be axiomatic when there is a set Σ ⊆ Fm closed under substitutions such that
for all Γ ∪ {ϕ} ⊆ Fm,

Γ `′ ϕ⇐⇒ Γ ∪ Σ ` ϕ.

We shall now review the rudiments of the theory of admissible rules. For a
systematic treatment, the reader may consult [69, 75]. A formula ϕ is said to be a
theorem of a logic ` if ∅ ` ϕ. Moreover, a rule is an expression of the form Γ � ϕ,
where Γ ∪ {ϕ} ⊆ Fm is a finite set. When Γ = {γ1, . . . , γn}, we shall sometimes
write γ1, . . . , γn � ϕ instead of Γ � ϕ. A rule Γ � ϕ is said to be derivable in a logic `
when Γ ` ϕ. It is admissible in ` when for every substitution σ on Fm,

if ∅ ` σ(γ) for all γ ∈ Γ, then ∅ ` σ(ϕ).

In other words, a rule is admissible in ` when its addition to ` does not produce any
new theorem. Clearly, every rule that is derivable in ` is also admissible in `. If the
converse holds, ` is said to be structurally complete (SC). Logics whose extensions are
all structurally complete have been called hereditarily structurally complete (HSC).

Every logic admits a canonical structurally complete extension, see, e.g., [75, Lem.
1.76 & Thms. 1.78 & 1.79].

Proposition 3.1. Every logic ` has a unique structurally complete extension `+ with the
same theorems. Furthermore, a rule is derivable in `+ precisely when it is admissible in `.

In view of the above result, `+ has been called the structural completion of `. Since
the derivable rules of `+ coincide with those admissible in `, a set Σ of rules is said
to be a base for the admissible rules on ` if its addition to ` axiomatizes `+.

Structural completeness can be split in two halves. A rule Γ � ϕ is said to be active
in a logic ` if there exists a substitution σ such that ∅ ` σ(γ) for all γ ∈ Γ. It is said to
be passive in ` otherwise. Then, a logic ` is called actively structurally complete (ASC)
if every active rule that is admissible in ` is also derivable in `, see [24, 62] (where
the adjective almost is used instead). Notice that every passive rule is vacuously
admissible. Accordingly, ` is said to be passively structurally complete (PSC) [80] if all
rules that are passive in ` are also derivable in `.
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A logic ` is algebraized by a quasivariety K [8] when there are a finite set of equations
τ(x) and a finite set of formulas ∆(x, y) such that for every Γ ∪ {ϕ} ⊆ Fm,

Γ ` ϕ⇐⇒
⋃
{τ(γ) : γ ∈ Γ} �K τ(ϕ)

x ≈ y =||=K

⋃
{τ(δ) : δ ∈ ∆(x, y)}

where �K is the equational consequence relative to K [8, 32]. In this case, K is uniquely
determined [8, Thm. 2.15] and is called the equivalent algebraic semantics of `.

When a logic ` is algebraized by a quasivariety K, structural completeness and
its variants admit the following purely algebraic characterization, in which FmK(ω)
and FmK(0) denote, respectively, the denumerably and zero-generated free algebras
of K.

Theorem 3.2. If a logic ` is algebraized by a quasivariety K, then
(i) ` is SC if and only if K is generated as a quasivariety by FmK(ω);

(ii) ` is HSC if and only if K is primitive;
(iii) ` is PSC if and only if every positive existential sentence is either true in all nontrivial

members of K or false in all of them;
(iv) ` is ASC if and only if A× FmK(ω) ∈ Q(FmK(ω)) for every relatively subdirectly

irreducible algebra A ∈ K. If there is a constant symbol in the language, then we can
replace “A× FmK(ω) ∈ Q(FmK(ω))” by “A× FmK(0) ∈ Q(FmK(ω))” in this
statement.

In the above result, items (i) and (ii) are essentially [5, Props. 2.3 & 2.4(2)], while
(iii) is [24, Cor. 3.2]. Lastly, (iv) was essentially proved in [24], but see also [71, Thm.
7.3].

When a logic ` is algebraized by a quasivariety K by means of finite sets of
equations and formulas τ and ∆, the lattice of extensions of ` is dually isomorphic
to Q(K) [32, Cor. 3.40]. The dual isomorphism is given by the map that sends an
extension `′ to the quasivariety axiomatized by the quasiequations∧∧

τ(γ1)∧∧ . . .∧∧
∧∧

τ(γn) =⇒ ε ≈ δ,

where γ1, . . . , γn `′ ϕ and ε ≈ δ ∈ τ(ϕ). The inverse of this dual isomorphism sends
a quasivariety M ∈ Q(K) to the logic axiomatized by the rules

∆(ϕ1, ψ1) ∪ · · · ∪∆(ϕn, ψn)� δ

where M � (ϕ1 ≈ ψ1 ∧∧ . . .∧∧ ϕn ≈ ψn) =⇒ ϕ ≈ ψ and δ ∈ ∆(ϕ, ψ). Furthermore,
the dual isomorphism restricts to one between the lattice of axiomatic extensions
of ` and V(K). Accordingly, the lattice of extensions (resp. axiomatic extensions)
of ` can be studied through the lens of Q(K) (resp. V(K)). The effect of structural
completeness on the lattice of extensions of ` is captured by the following results,
the first of which is a direct consequence of Theorem 2.1 and Theorem 3.2(ii).

Corollary 3.3. If an HSC logic ` is algebraized by a quasivariety K, then the lattice of
extensions of ` and Q(K) are distributive.
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Proposition 3.4 ([63, Thm. 4.3 & Rmk. 5.13]). Let ` be a logic algebraized by a quasivariety
K. If ` is PSC, then every member of Q(K) has the JEP. Moreover, for every extension `′ of
` there exists an algebra A such that, for every Γ ∪ {ϕ} ⊆ Fm,

Γ `′ ϕ⇐⇒ τ[Γ] �A τ(ϕ),

where τ is the set of equations witnessing the algebraization of `.

4. FUZZY LOGIC

A BL-algebra is a structure A = 〈A;∧,∨, ·,→, 0, 1〉 that comprises a bounded lattice
〈A;∧,∨, 0, 1〉 and a commutative monoid 〈A; ·, 1〉 such that, for every a, b, c ∈ A, the
residuation law

a · b 6 c⇐⇒ a 6 b→ c
holds and

(a→ c) ∨ (c→ a) = 1 and a ∧ c = a · (a→ c).
It follows that the lattice reduct of A is distributive; see Corollary 4.3 below. Totally

ordered algebras are referred to as chains. Furthermore, the lattice operations can be
defined in terms of · and→. For ∧ this is a consequence of the above display, while
for ∨ we have

x ∨ y := ((x → y)→ y) ∧ ((y→ x)→ x)).
From a logical standpoint, the class of BL-algebras forms a variety that algebraizes
Hájek’s basic logic BL [45].

Given a BL-algebra A, a nonempty set F ⊆ A is said to be a filter of A if it is upward
closed, in the sense that if a ∈ F and a 6 c, then c ∈ F (an upset), and it is closed
under multiplication, that is, if a, c ∈ F, then a · c ∈ F. A filter F of A is called prime
when, for every a, c ∈ A,

if a ∨ c ∈ F, then a ∈ F or c ∈ F.

When ordered under the inclusion relation, the set Fi A of filters of A becomes a
lattice that, moreover, is isomorphic to Con A.

Theorem 4.1 ([45, Lem. 2.3.14]). Let A be a BL-algebra. The map θ(−) : Fi A → Con A,
defined by the rule

θF := {〈a, c〉 ∈ A× A : a→ c, c→ a ∈ F},
is a lattice isomorphism. Furthermore, the following conditions are equivalent for a filter F of
A:

(i) F is prime;
(ii) A/θF is a chain;

(iii) A/θF is finitely subdirectly irreducible.

Henceforth, we will write A/F as a shorthand for A/θF.
The following observation is instrumental to prove the existence of prime filters in

BL-algebras. Its proof is a straightforward adaptation of [57, Lem. 2.3].

Lemma 4.2. Let A be a BL-algebra and I ⊆ Ar {1} such that a∨ c ∈ I, whenever a, c ∈ I.
Then there is a prime filter F of A disjoint from I.
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In view of the subdirect decomposition theorem [6, Thm. 3.24], the second part of
Theorem 4.1 implies the following.

Corollary 4.3. Every BL-algebra is isomorphic to a subdirect product of BL-chains. As a
consequence, the lattice reduct of a BL-algebra is distributive.

BL-chains, in turn, admit a rich structure theory, as we proceed to explain. A t-norm
is a binary function ∗ : [0, 1]2 → [0, 1] on the unit interval [0, 1] that is commutative,
associative, order preserving in both arguments, and such that 1 ∗ a = a, for every
a ∈ [0, 1]. In addition, a t-norm is said to be continuous when it is continuous with
respect to the standard topology on [0, 1]. BL-chains are related to continuous t-norms
as follows. On the one hand, every continuous t-norm ∗ induces a BL-chain

〈[0, 1];∧,∨, ∗,→, 0, 1〉,
where ∧ and ∨ are the binary operations of infinum and supremum with respect to
the standard ordering of [0, 1] and→ is the binary operation defined by the rule

a→ c :=
∨
{b ∈ [0, 1] : b ∗ a 6 c}.

BL-algebras of this form are known as standard. On the other hand, every BL-chain
embeds into an ultraproduct of standard BL-algebras [13, Thm. 9].

In view of the theorem of Mostert and Shields [64, Thm. B], every continuous
t-norm ∗ can be decomposed into an ordinal sum of three special t-norms: the
truncated sum a ∗Ł c := max{0, a + c− 1}, the product a ∗P c := ac and the minimum
operation a ∗G c := min{a, c}.

Because of this, the standard BL-algebras R−Ł , R−P and R−G induced, respectively,
by the three basic continuous t-norms ∗Ł, ∗P, and ∗G stand out among BL-chains.
Indeed, each of them induces a distinguished axiomatic extension of the basic logic
BL. For instance, Łukasiewicz logic Ł is defined, for every set of formulas Γ ∪ {ϕ}, as

Γ `Ł ϕ⇐⇒ there exists a finite ∆ ⊆ Γ such that τ[∆] �R−Ł
τ(ϕ),

where τ := {x ≈ 1}. Product logic P and Gödel-Dummett logic G (sometimes called
simply Gödel logic) are obtained similarly, replacing R−Ł by R−P and R−G respectively,
see, e.g., [11, 45].

Łukasiewicz, product, and Gödel logic are algebraized, respectively, by varieties
MV := V(R−Ł ) of MV-algebras, PA := V(R−P ) of product algebras, and GA := V(R−G) of
Gödel algebras. Notably,

MV := Q(R−Ł ) PA := Q(R−P ) GA := Q(R−G).

The first equality above can be traced back to [51, Lem. B], see also the discussion in
[39] or [45, Lem. 3.2.11(3)], the second is implicit in [48, 45] and is based on the fact
that all nontrivial totally ordered abelian groups have the same universal theory [44],
while the third is relatively straightforward.

Sufficiently well-structured MV-algebras, product algebras, and Gödel algebras
can be expanded with rational constants, as we proceed to explain. Consider a set of
constants

C = {cq : q ∈ [0, 1] ∩Q},
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where Q denotes the set of rational numbers. Observe that [0, 1] ∩Q is the universe
of a subalgebra of R−Ł (resp. of R−P and R−G ) that we denote by Q−Ł (resp. Q−P and
Q−G ). Because of this, given an algebra A ∈ {R−Ł , R−P , R−G}, we can consider the set
B(A) of equations in the language of A expanded with the constants in C of the form

cp · cq ≈ cp·Aq cp → cq ≈ cp→Aq c0 ≈ 0 c1 ≈ 1,

for every p, q ∈ Q∩ [0, 1]. The equations in B(A) are sometimes called the bookkeeping
axioms of A. We do not include bookkeeping axioms for the lattice operations, because
these can be defined in terms of · and→.

Definition 4.4. An algebra A in the language of BL-algebras expanded with constants
in C is said to be

(i) a rational MV-algebra if the BL-reduct of A is an MV-algebra and A validates the
bookkeeping axioms B(R−Ł );

(ii) a rational product algebra if the BL-reduct of A is a product algebra and A validates
the bookkeeping axioms B(R−P );

(iii) a rational Gödel algebra if the BL-reduct of A is a Gödel algebra and A validates
the bookkeeping axioms B(R−G).

We denote by RMV,RPA and RGA the varieties5 of rational MV-algebras, rational
product algebras, and rational Gödel algebras respectively.

Canonical rational MV, product, and Gödel algebras can be obtained by expanding
the standard BL-algebras R−Ł , R−P , and R−G with the natural interpretation of the
constants in C, that is, by interpreting cq as the rational q. We denote these expansions,
respectively, by RŁ, RP, and RG. Furthermore, we denote their subalgebras with
universe Q∩ [0, 1] by QŁ, QP, and QG respectively. The importance of the algebras
RŁ, RP, and RG is witnessed by the equalities

RMV = V(RŁ) RPA = V(RP) RGA = V(RG).

For the second and the third equalities above, see [76, Thm. 5.4] and [29, Thm. 13].
Notably, RMV coincides also with the quasivariety generated by RŁ [45, Thm. 3.3.14].
This contrasts with the case of RPA and RGA, as there are not the quasivarieties
generated by RP and RG, see [76, Lem. 3.6] and [29, Sec. 4].

From viewpoint of logic, the varieties RMV,RPA, and RGA algebraize expansions
of Ł, P, and G. For instance RMV algebraizes rational Łukasiewicz logic RŁ defined, for
every set of formulas Γ ∪ {ϕ} as

Γ `RŁ ϕ⇐⇒ there exists a finite ∆ ⊆ Γ such that τ[∆] �RMV τ(ϕ),

where τ := {x ≈ 1}. Rational product logic RP and rational Gödel logic RG are obtained
similarly, replacing RMV by RPA and RGA, see, e.g., [30].

Notice that Theorem 4.1 and Lemma 4.2 apply to rational Łukasiewicz, rational
product, and rational Gödel algebras as well, because the addition of constants to a
given algebra does not change its congruences and filters.

5Notice that RMV,RPA, and RGA are varieties, because so are MV,PA, and GA, and the bookkeeping
axioms are equations.
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5. EXTENSIONS OF RATIONAL PRODUCT LOGIC

In view of the following result, the lattice of extensions of product logic (without
rational constants) is a three-element chain:

Theorem 5.1 ([14, Cor. 3.22]). The unique proper nontrivial extension of P is algebraized
by a variety term-equivalent to that of Boolean algebras. Consequently, every extension of P
is axiomatic and P is HSC.

It is therefore sensible to wonder whether a similar situation holds for the case of
rational product logic RP. The aim of this section is to shed light on this problem.
To this end, it is convenient to separate the case of axiomatic extensions from that of
arbitrary extensions of RP. This is because, as regarding axiomatic extensions, RP
behaves similarly to P.

Theorem 5.2. There are only two proper nontrivial subvarieties K1 and K2 of RPA.
(i) K1 is term-equivalent to the variety of Boolean algebras and is axiomatized by the pair of

equations cq ≈ 1 and x ∨ (x → 0) ≈ 1, where q is any rational number in the interval
(0, 1);

(ii) K2 is term-equivalent to the variety of product algebras and is axiomatized by the
equation cq ≈ 1, where q is any rational number in the interval (0, 1).

Consequently, K1 ( K2 and V(RPA) is a four-element chain.

Since the lattice of axiomatic extensions of RP is dually isomorphic to that of
subvarieties of RPA, the above result can be rephrased in logical parlance as follows.

Corollary 5.3. The lattice of axiomatic extensions of RP is a four-element chain. The two
sole proper consistent axiomatic extensions of RP are algebraized by varieties term-equivalent,
respectively, to those of Boolean and product algebras.

On the other hand, the lattice of extensions of rational product logic is quite
complicated.

Theorem 5.4. The variety of rational product algebras is Q-universal. Consequently, the
lattice of extensions of RP has the cardinality of the continuum and does not validate any
nontrivial lattice equation.

Accordingly, from the point of view of extensions, RP is by far richer than P.
The remaining part of this section is devoted to the proofs of Theorems 5.2 and 5.4.

In order to establish Theorem 5.2, we rely on the following observation.

Proposition 5.5. RPA = V(QP).

Proof. In [76, Thm. 5.4] it is shown that RPA = V(RP). Accordingly, to prove that
RPA = V(QP), it suffices to show that if an equation fails in RP, then it also fails in
QP. Assume, towards a contradiction, that there is an equation ε(~x) ≈ δ(~x) true in
QP and a tuple~a of reals in [0, 1] such that εRP(~a) 6= δRP(~a). First notice that we can
assume δ to be 1; otherwise we replace the original equation with ε↔ δ ≈ 1. In the
rest of the proof we moreover assume that the lattice connectives do not occur in ε;
this is without loss of generality as they are term-definable from · and→.
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Recall that for a, b ∈ [0, 1], we have

a ·RP b = 0⇐⇒ 0 = min{a, b}
a→RP b = 0⇐⇒ a > b = 0.

Clearly, F := (0, 1] is a filter on RP and RP/F is a two-element chain; we can assume
that its universe is {0, 1} (under the identification of 0 with 0/F and 1 with 1/F). For
a, b ∈ [0, 1], we write a ∼ b if and only if a/F = b/F.

Now recall that εRP(~a) < 1 for some~a = 〈a1, . . . , an〉 in [0, 1]n. Then take I = {i 6
n : ai is irrational}. For an arbitrarily chosen i ∈ I, fix a sequence {aik : k ∈ ω} of
rationals in (0, 1] tending to ai (this is possible because ai, being irrational, is positive).
To conclude the proof, it is enough to find, for the chosen i ∈ I, a rational ci ∈ [0, 1]
such that

εRP(a1, . . . , ai−1, ci, ai+1, . . . , an) < 1.

This is sufficient as the process can be iterated for the remaining elements of I r {i},
finally obtaining rationals c1, . . . , cn ∈ [0, 1] such that εRP(c1, . . . , cn) < 1, as desired.

Accordingly, fix an i ∈ I and for each subterm η(~x) of ε(~x), let fη : (0, 1]→ [0, 1] be
the map defined by the rule

fη(z) := ηRP(a1, . . . , ai−1, z, ai+1, . . . , an).

We claim that the sequence { fη(aik) : k ∈ ω} tends to ηRP(a1, . . . , an) for any choice
of η a subterm of ε. The proof is by induction on term structure of η. The cases where
η is a variable or a constant are straightforward. Given that ai and all aik are positive,
we have ai ∼ aik for each k ∈ ω. Then for every subterm η of ε and every k ∈ ω,

fη(ai) ∼ fη(aik).

Consequently, if ηRP(a1, . . . , an) = 0, then { fη(aik) : k ∈ ω} is a constant sequence of
zeros and we are done. Then we consider the case where ηRP(a1, . . . , an) 6= 0.

For the inductive step, observe that if η is of the form ϕ1 · ϕ2, the result follows
from the inductive hypothesis and the fact that · is continuous in [0, 1]. Then we
consider the case where η is of the form ϕ1 → ϕ2. We have

0 6= ηRP(~a) = ϕRP
1 (~a)→RP ϕRP

2 (~a).

Consequently, either ϕRP
1 (~a) = 0 or ϕRP

1 (~a), ϕRP
2 (~a) > 0. Suppose that the latter

holds. Then fϕj(aik) ∼ fϕj(ai) = ϕRP
j (~a) > 0, for all j = 1, 2 and k ∈ ω. Hence,

0 < fϕj(aik) and the result follows from the inductive hypothesis and the fact that

→ is continuous in (0, 1]. It only remains to consider the case where ϕRP
1 (~a) = 0.

We have ϕRP
1 (~a) → ϕRP

2 (~a) = 1. Furthermore, as ai ∼ aik for k ∈ ω, we have
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ϕRP
1 (a1, . . . , ai−1, aik, ai+1, . . . , an) = 0 for all k ∈ ω, whence

ϕRP
1 (a1, . . . , ai−1, aik, ai+1, . . . , an)→RP ϕRP

2 (a1, . . . , ai−1, aik, ai+1, . . . , an)

= 0→RP ϕRP
2 (a1, . . . , ai−1, aik, ai+1, . . . , an)

= 1 = ϕRP
1 (~a)→RP ϕRP

2 (~a), for all k ∈ ω.

Thus, 1 = fη(ai) = fη(aik) for each k ∈ ω. This establishes the claim.
Given the claim, the fact that εRP(a1, . . . , an) < 1 implies the existence of an m ∈ ω

such that εRP(a1, . . . , ai−1, aim, ai+1, . . . , an) < 1. Taking ci := aim, we are done. �

Proof of Theorem 5.2. Observe that a rational product algebra validates the equation
cq ≈ 1 for some q ∈ (0, 1) ∩Q if and only if it validates all the equations {cp ≈ 1 :
p ∈ (0, 1) ∩Q}. Indeed, let p, q ∈ (0, 1) ∩Q and cA

q = 1A. Let n be an integer such
that qn 6 p. Then, by the bookkeeping axioms, we have

cA
p > cA

qn = (cA
q )

n = 1A.

Let PA∗ be the class of rational product algebras A in which cA
q = 1 for all rational

numbers q ∈ (0, 1]. Clearly, PA∗ is a subvariety of RPA term-equivalent to that of
product algebras. Thus, in view of Theorem 5.1, it suffices to prove that PA∗ is the
largest proper subvariety of RPA. To this end, let A be a rational product algebra
such that V(A) is a proper subvariety of RPA. By Proposition 5.5, the zero-generated
subalgebra C of A cannot be isomorphic to QP. Accordingly, there is a filter F of
QP, different from {1}, such that the algebra C is isomorphic to QP/F. The algebra
QP has only three filters: {1}, (0, 1] and [0, 1]. Thus (0, 1] ⊆ F, and hence cA

q = 1 for
all q ∈ (0, 1]. This means that A ∈ PA∗. This shows that PA∗ is the largest proper
subvariety of RPA. �

The remaining part of the section is devoted to the proof of Theorem 5.4. Let
Prime be the set of prime numbers and let P<ω(Prime) be the set of finite subsets
of Prime. We denote by S(P<ω(Prime)) the lattice of universes of subalgebras of
〈P<ω(Prime),∪, ∅〉 with set inclusion as the order. The following observation can be
extracted from the proof of [1, Thm. 3.3].

Theorem 5.6. Let K be a quasivariety. If there exist a subquasivariety M of K and a surjective
bounded-lattice homomorphism

h : Q(M)→ S(P<ω(Prime)),

then K is Q-universal.

Proof of Theorem 5.4. For the variety RPA we find a quasivariety M and a surjective
homomorphism h as in Theorem 5.6.

We begin by defining a family of rational product algebras {AX : X ∈ P<ω(Prime)}.
For a finite nonempty set X of prime numbers, let AX be the subalgebra of RX

P
generated by the function invX : X → [0, 1] that sends an element p ∈ X to 1/√p.
Notice that A∅ is a trivial algebra. Let

M := Q({AX : X ∈ P<ω(Prime)})
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and, for a subquasivariety N of M, define

h(N) := {X ∈ P<ω(Prime) : AX ∈ N}.

In order to prove that h is a well-defined map from Q(M) to S(P<ω(Prime)), let
N ∈ Q(M). Since A∅ is a trivial algebra, A∅ ∈ N, and hence ∅ ∈ h(N). To prove that
h(N) is closed under binary unions, consider X1, X2 ∈ h(N). By definition of h, we
have AX1 , AX2 ∈ N. Moreover, the map that sends an element a ∈ AX1∪X2 to the pair
(a�X1

, a�X2
) is an embedding of AX1∪X2 into AX1 × AX2 . Hence,

AX1∪X2 ∈ IS(AX1 × AX2) ⊆ ISP(N) ⊆ N.

As a consequence, X1 ∪ X2 ∈ h(N). We conclude that h : Q(M)→ S(P<ω(Prime)) is
well defined, as desired.

It follows from the definition of h that it preserves the binary meet. We also have
h(M) = P<ω(Prime), which means that h sends the top element of Q(M) to the top
element of S(P<ω(Prime)). Let Tr be the class of all trivial algebras (in the language
of RPA). Since A∅ is the only trivial algebra in the family {AX : X ∈ P<ω(Prime)},
we have h(Tr) = {∅}. This means that h sends the bottom element of Q(M) to the
bottom element of S(P<ω(Prime)).

Thus, it only remains to show that f preserves the binary join and is surjective.
The proof will proceed through a series of claims. For every X ∈ P<ω(Prime), let us
consider the formulas

ΓX(z) :=
∨

p∈X
(z2 ↔ c1/p) ≈ 1

and
∆X(z) := ΓX(z)∧∧

∧∧
p∈X
¬¬ ΓXr{p}(z).

We interpret Γ∅(z) and ∆∅(z) as 0 ≈ 1. Hence these formulas hold only in trivial
algebras. Moreover, for every X ∈ P<ω(Prime) and a ∈ [0, 1],

RP � ΓX(a)⇐⇒ a ∈ {1/√p : p ∈ X}.

As a consequence, we obtain AX � ∆X(invX).
For every p ∈ Prime, let Ap be a subalgebra of RP generated by 1/√p (notice that

Ap ∼= A{p}).

Claim 5.7. Let p and q be distinct prime numbers. Then 1/√p does not belong to Aq.

Proof of the claim. Let

Bq := (Q∪ {a · √q : a ∈ Q} ∪ {a/√q : a ∈ Q}) ∩ [0, 1].

Then Bq is the universe of a subalgebra Bq of RP. Since 1/√q ∈ Bq, we have Aq ⊆ Bq.
And hence, since 1/√p 6∈ Bq, we have 1/√p 6∈ Aq. �

Claim 5.8. Let X, Y ∈ P<ω(Prime) and a ∈ AY. Then AY � ∆X(a) if and only if X = Y
and a = invX.
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Proof of the claim. The implication from right to left holds because AX � ∆X(invX),
for all X ∈ P<ω(Prime). To prove the other implication, suppose that AY � ∆X(a).
Recall that AY is the subalgebra of RY

P generated by invY. Therefore, a is a function
a : Y → [0, 1]. Let q ∈ Y. Since Aq is a homomorphic image of AY and ΓX(z) is an
equation such that AY � ∆X(a), we have Aq � ΓX(a(q)). As Aq is a subalgebra of RP,
we obtain that a(q) ∈ {1/√p : p ∈ X} ∩ Aq. By Claim 5.7, it follows that a(q) = 1/√q

and q ∈ X. This shows that a = invY and Y ⊆ X. It only remains to show that X ⊆ Y.
Accordingly, let p ∈ X. Since AY � ∆X(a) and a = invY, we have AY � ΓZ(invY)
for every finite set Z of prime numbers such that Y ⊆ Z and AY 2 ΓXr{p}(invY).
Consequently, Y * X r {p}. As Y ⊆ X, this implies p ∈ Y. Hence, we conclude that
X ⊆ Y, as desired. �

Claim 5.9. Let X ∈ P<ω(Prime) and let {Bi : i ∈ I} be a family of rational product
algebras, each with an element bi ∈ Bi. Furthermore, let B = ∏i∈I Bi and let b be the
element of B whose i-th coordinate is bi. If B � ∆X(b), then there exists a family of sets
{Yi : i ∈ I} such that

(i) X =
⋃

i∈I Yi and
(ii) Bi � ∆Yi(bi), for every i ∈ I.

Proof of the claim. Let i ∈ I. Since B � ∆X(b), we have B � ΓX(b). As ΓX(z) is an
equation, it is preserved by homomorphisms and, therefore, Bi � ΓX(bi). Hence,
since X is finite, there exists a subset Yi of X such that Bi � ΓYi(bi) but Bi 6� ΓYir{p}(bi)

for every p ∈ Yi. In particular, Bi � ∆Yi(bi).
Let then Y :=

⋃
i∈I Yi. By construction, Y ⊆ X. In order to prove reverse inclusion,

consider i ∈ I. From Yi ⊆ Y and Bi � ΓYi(bi) it follows Bi � ΓY(bi). Thus, B � ΓY(b)
and, therefore, B � ΓZ(b) for every finite set Z ⊇ Y of primes. Let p ∈ X. Since
B � ∆X(b), we have B 2 ΓXr{p}(b). It follows that Y 6⊆ X r {p}. As Y ⊆ X, this
implies p ∈ Y. Hence, we conclude that X ⊆ Y. �

We are now in a position to prove surjectivity.

Claim 5.10. The map h is surjective.

Proof of the claim. Let S ∈ S(P<ω(Prime)) and define

N := Q({AY : Y ∈ S}).
We clearly have S ⊆ h(N). For the verification of the reverse inclusion, let us consider
a set X in h(N), i.e., such that AX ∈ N. Then

AX ∈ Q({AY : Y ∈ S}) = ISPPU({AY : Y ∈ S}).
Accordingly, there is a family of algebras {Bi : i ∈ I} such that AX embeds into the
product ∏i∈I Bi and, for every i ∈ I, there is a family of algebras {Cij : j ∈ Ji} and
an ultrafilter Ui on Ji such that Bi = ∏j∈Ji

Cij/Ui and the various Cij belong to the
family {AY : Y ∈ S}.

Since AX � ∆X(invX) and AX embeds into ∏i∈I Bi, there is b ∈ B such that
∏i∈I Bi � ∆X(b). Then we may apply Claim 5.9 obtaining a family {Yi : i ∈ I} of
finite subsets of X as in the statement of the claim. In particular, for every i ∈ I, we
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have Bi � ∃z ∆Yi(z). By Łoś’ Theorem [10, Thm. V.2.9], there exists a nonempty set
W ∈ Ui such that Cij � ∃z ∆Yi(z) for every j ∈ W. Consequently, there exists j ∈ Ji
such that Cij � ∃z ∆Yi(z). Recall that Cij = AY for some Y ∈ S. By Claim 5.8, the sets
Yi and Y are equal. In this way, we showed that Yi ∈ S, for every i ∈ I. Since X is
finite, the set {Yi : i ∈ I}, consisting of subsets of X, is finite as well. Moreover, it is a
subset of S. Thus, its union, which equals X, belongs to S. �

Claim 5.11. Let X ∈ P<ω(Prime). If B � ∃z ∆X(z) and B ∈ PU({AY : Y ∈ P<ω(Prime)}),
then B ∈ IPU(AX).

Proof of the claim. Assume that B � ∃z ∆X(z) and that B = ∏i∈I Ci/U, where all Ci
belong to {AY : Y ∈ P<ω(Prime)}. Let J := {i ∈ I : Ci � ∃z ∆X(z)}. By Łoś’ Theorem,
J ∈ U. Moreover, by Claim 5.8, Ci = AX for every i ∈ J. Thus B is isomorphic to the
ultrapower AJ

X/(U ∩ P(J)) of AX. �

Claim 5.12. Let X ∈ P<ω(Prime) and A ∈ M. If A � ∃z ∆X(z), then AX embeds into A.

Proof of the claim. Let a ∈ A be such that A � ∆X(a). We will show that the subalgebra
A′ of A generated by a is isomorphic to AX.

As A ∈ M = ISPPU({AY : Y ∈ S}), there exists an embedding e : A → ∏i∈I Bi,
where Bi = ∏j∈Ji

Cij/Ui for some algebras Cij ∈ {AY : Y ∈ P<ω(Prime)} and
ultrafilters Ui on Ji. Let b := e(a). Then, since e is an embedding, ∏i∈I Bi � ∆X(b)
and, hence, we may apply Claim 5.9 obtaining a family {Yi : i ∈ I} of finite subsets of
X as in the statement of the claim. Consider i ∈ I. By Claim 5.9, Bi � ∆Yi(bi), where bi
is the i-th coordinate of b. Moreover, by Claim 5.11, Bi is isomorphic to an ultrapower
of AYi . In particular, there exists an elementary embedding ei : AYi → Bi. Since AYi �
∆Yi(invYi) and ei is an embedding, Bi � ∆Yi(ei(invYi)). Furthermore, by Claim 5.8,
there is at most one element of AYi satisfying ∆Yi(z). Since AYi are Bi are elementarily
equivalent, the same is true for Bi. Therefore, from Bi � ∆Yi(ei(invYi))∧∧∆Yi(bi) it
follows bi = ei(invYi).

Let B′i be the subalgebra of Bi generated by bi. Since AYi is generated by invYi
and ei : AYi → Bi is an embedding that sends invYi to bi, the algebras AYi and B′i are
isomorphic under ei : AYi → B′i . Furthermore, recall that A′ is the subalgebra of A
generated by a and that the map e : A → ∏i∈I Bi is an embedding that sends a to
b. Since bi ∈ B′i for all i ∈ I, the map e restricts to an embedding of A′ into ∏i∈I B′i .
Lastly, as each e−1

i : B
′
i → AYi is an isomorphism that sends bi to invYi , there exists an

embedding e+ : A′ → ∏i∈I AYi such that

e+(a) = 〈invYi : i ∈ I〉.
Since

⋃
i∈I Yi = X, the subalgebra of ∏i∈I AYi generated by e+(a) is isomorphic to

AX. Thus, A′ is isomorphic to AX, as desired. �

Claim 5.13. The map h preserves binary joins.

Proof of the claim. Let N1 and N2 be subquasivarieties of M. We have to show that
h(N1 ∨ N2) = h(N1) ∨ h(N2). Since h is order preserving, the inclusion h(N1) ∨
h(N2) ⊆ h(N1 ∨ N2) holds.
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In order to verify the reverse inclusion, we consider a set X in h(N1 ∨ N2). Then
AX ∈ N1 ∨ N2 = ISPPU(N1 ∪ N2). It is a general fact about ultraproducts that
PU(N1 ∪N2) = PU(N1) ∪ PU(N2). Since N1 and N2 are closed under the formation of
ultraproducts, this yields PU(N1 ∪ N2) = N1 ∪ N2. Since they are also closed under
direct proucts, there are B1 ∈ N1 and B2 ∈ N2 such that AX embeds into into B1 × B2.
Since AX � ∃z ∆X(z), we obtain B1 × B2 � ∃z ∆X(z). By Claim 5.9, there are sets Y1
and Y2 such that X = Y1 ∪Y2 and B1 � ∃z ∆Y1(z) and B2 � ∃z ∆Y2(z). By Claim 5.12,
AY1 embeds into B1. Hence, AY1 ∈ N1 and, therefore, Y1 ∈ h(N1). In the same way,
we obtain that Y2 ∈ h(N2). Thus X = Y1 ∪Y2 ∈ h(N1) ∨ h(N2). �

Hence, we conclude that h : Q(M) → S(P<ω(Prime)) is a surjective bounded-
lattice homomorphism. �

6. STRUCTURAL COMPLETENESS IN RATIONAL PRODUCT LOGIC

While it is well known that product logic P is HSC (Theorem 5.1), from Theorem
5.4 and Corollary 3.3 it follows that RP is not HSC. Indeed, as we shall see, RP is
not even passively structurally complete. The next result provides an answer to the
question which rules are admissible in RP.

Theorem 6.1. The structural completion of RP is the unique extension of RP whose equiva-
lent algebraic semantics is Q(QP). A base for the admissible rules of RP is given by the set
of rules of the form

cq ∨ z � z (cp ↔ xn) ∨ z � z,

for each (equiv. some) q ∈ (0, 1) ∩Q and each p ∈ [0, 1] ∩Q, n ∈ ω such that n
√

p is
irrational.

The core of the proof of Theorem 6.1 amounts to the following description of the
universal theory of QP.

Theorem 6.2. The universal theory of QP is axiomatized relative to RPA by the sentences

∀xy (x 6 y∨∨ y 6 x), cq 6≈ 1, and ∀x (cp 6≈ xn),

for each (equiv. some) q ∈ (0, 1) ∩Q and each p ∈ [0, 1) ∩Q, n ∈ ω such that n
√

p is
irrational.

Theorem 6.1 provides a decision procedure for admissibility in RP. It follows
from the rational root theorem (see e.g. [52, Thm. III.6.8]) that the set {〈n, p〉 : n ∈
ω and p ∈ [0, 1] ∩ Q and n

√
p ∈ Q} is decidable. Hence, the base for the admis-

sible rules from Theorem 6.1 forms a decidable set. To determine whether a rule
γ1, . . . , γn � ϕ is admissible in RP, we use the procedure consisting in enumerating
all proofs with the assumptions among γ1, . . . , γn in the logic obtained from RP by
adding the rules in Theorem 6.1 (and accepting if ϕ is obtained) and, simultaneously,
enumerating all tuples~a of elements in [0, 1] ∩Q such that γ

QP
1 (~a) = · · · = γ

QP
n (~a) =

1 (and rejecting if one is found such that ϕQP(~a) 6= 1).

Corollary 6.3. Admissible rules in RP form a decidable set.
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The next results (which will be proved later on) present a full characterization of
(hereditarily, actively, passively) structurally complete extensions of RP.

Theorem 6.4. An extension ` of RP is SC if and only if one of the following holds:
(i) ` is the structural completion of RP and, therefore, it is algebraized by Q(QP); or

(ii) ` is algebraized by one of the three proper subvarieties of RPA, in which case ` is HSC.

Corollary 6.5. An extension of RP is HSC if and only if it is SC.

Corollary 6.6. An extension of RP is ASC if and only if it is SC.

Corollary 6.7. An extension of RP is PSC if and only if it is SC or it validates all rules of
the form

cq ∨
k∨

i=1

(xni
i ↔ cpi)� 0,

where k is a non-negative integer, n1, . . . , nk are natural numbers, and q, p1, . . . , pk ∈
[0, 1) ∩Q are such that all numbers ni

√
pi are irrational.

Remark 6.8. In view of Corollaries 6.5 and 6.6, the notions of ASC, SC, and HSC
are equivalent for extensions of RP. We will show that this equivalence cannot be
extended to PSC, as there exist extensions of RP that are PSC, but not SC.

To this end, consider the algebra QP × QP
′, where QP

′ is the expansion of the
product algebra Q−P in which all constants cp with p 6= 0 are interpreted to the
maximum element 1 and in which c0 is interpreted as 0. Moreover, let ` be the
unique extension ` of RP algebraized by Q(QP × QP

′). Notice that ` is PSC, by
Corollary 6.7. On the other hand, Q(QP ×QP

′) is neither a proper subvariety of RPA
(because it contains QP) nor Q(QP) (because QP

′ /∈ Q(QP)). Therefore, ` is not SC,
by Theorem 6.4. �

We begin by showing how to derive Theorem 6.4 from Theorem 6.1. To this end,
suppose that Theorem 6.1 holds. Recall that FmRPA(ω)) denotes the free denumer-
ably generated rational product algebra.

Lemma 6.9. The following holds for a subquasivariety K of RPA.
(i) QP ∈ K if and only if V(K) = RPA.

(ii) If QP ∈ K, then QP 6 FmK(ω).
(iii) If QP ∈ K, then Q(QP) = Q(FmK(ω)).

Proof. (i): Suppose QP ∈ K. Then V(QP) ⊆ V(K). By Proposition 5.5, RPA = V(QP),
therefore V(K) = RPA. Now, let V(K) = RPA. By Proposition 5.5, the free algebras
of RPA, K, and Q(QP) coincide. In particular, since QP is the zero-generated free
algebra in RPA, we conclude that QP ∈ K.

(ii): This follows from the fact that if QP ∈ K, then QP is the zero-generated free
algebra of K.

(iii): By (ii), Q(QP) ⊆ Q(FmK(ω)). On the other hand, since the free algebras
of Q(QP) and of K coincide, we have FmK(ω) ∈ Q(QP), hence Q(FmK(ω)) ⊆
Q(QP). �
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Proof of Theorem 6.4. Let K` be the quasivariety of rational product algebras algebraiz-
ing `.

Suppose first that V(K`) = RPA. By Theorem 3.2(i), ` is SC if and only if K` =
Q(FmK`(ω)). Moreover, applying Lemma 6.9, ` is SC if and only if K` = Q(QP); by
Theorem 6.1, the last equality holds if and only if ` is the structural completion of
RP.

Suppose on the other hand that V(K`) is a proper subvariety of RPA. By Theorem
5.2, this guarantees that K` is term-equivalent to a quasivariety of product algebras.
By theorem 5.1, the variety of product algebras is primitive. It follows that K` is a
variety, i.e., the condition (ii) holds. In view of Theorem 3.2(ii), ` is HSC. �

Proof of Corollary 6.5. It is enough to show that all SC extensions of RP listed in
Theorem 6.4 are HSC. For the extensions in item (ii), this fact follows from Theorems
5.1 and 5.2 (cf. the proof of Theorem 6.4).

For the structural completion of RP, we show that Q(QP) is a minimal quasivariety.
To this end, observe that if A ∈ Q(QP) is nontrivial, then A validates the quasiequa-
tions of the form cq ≈ 1 =⇒ 0 ≈ 1, for q ∈ Q ∩ [0, 1). Consequently, cA

q < 1, for all
q ∈ [0, 1) ∩Q and, therefore, QP embeds into A. This implies that Q(QP) ⊆ Q(A).
Hence, we conclude that Q(QP) is a minimal quasivariety. �

Proof of Corollary 6.6. Let ` be an ASC extension of RP and let K` be the quasivariety
algebraizing `. If K` � cp ≈ 1 for some p ∈ [0, 1) ∩Q then, by Theorem 5.2, K` is
contained in a proper subvariety of RPA. Thus, by Theorem 6.4, the quasivariety K`
is primitive and ` is SC.

Otherwise, QP ∈ K`. This implies V(K`) = RPA, by Lemma 6.9(i). Conse-
quently, RPA and K` have the same free algebras and, therefore, the same admissible
quasiequations. It follows that RP and ` have the same admissible rules. Therefore,
in order to prove that ` is SC, it suffices to show that the rules that are admissible in
RP are derivable in `. Clearly, it will be enough to show that the rules in the base of
the admissible rules for RP presented in Theorem 6.1 are derivable in `.

To this end, consider any rule ϕ(x) ∨ z � z in this base. Since ∅ ` ϕ(x) ∨ 1, this
rule active in `. Furthermore, it is admissible, because RP and ` have the same
admissible rules. From the assumption that ` is ASC it follows that ϕ(x) ∨ z ` z.
Hence, we conclude that ` is SC, as desired. �

Proof of Corollary 6.7. It suffices to show that a non SC extension ` of RP is PSC if and
only if it validates all rules of the form

cq ∨
k∨

i=1

(xni
i ↔ cpi)� 0, (1)

where k is a non-negative integer, n1, . . . , nk are natural numbers, and q, p1, . . . , pk ∈
[0, 1) ∩Q are such that all numbers ni

√
pi are irrational.

Accordingly, consider a non SC extension ` of RP and let K` be the its equivalent
algebraic semantics. By Theorems 5.2 and 6.4, we have V(K`) = RPA; moreover by
Lemma 6.9(i), QP ∈ K`.
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Let T be the set of all formulas that are antecedents of one of the rules in (1). The
stipulation that ` validates the rules in (1) is equivalent to the following:

(i) Every nontrivial A ∈ K` validates all the sentences ∀~x δ(~x) 6≈ 1 with δ(~x) ∈ T.

In view of Theorem 3.2(iii), the logic ` is PSC if and only if the nontrivial members
of K` validate the same existential positive sentences. Since QP is free in K`, there
exists a homomorphism from QP to any member of K`. Hence, every existential pos-
itive sentence which is valid in QP is also valid in K`. Consequently, the stipulation
that ` is PSC is equivalent to the following:

(ii) If A ∈ K` is nontrivial, every existential positive sentence valid in A is also
valid in QP.

Therefore, it will be enough to show that conditions (i) and (ii) are equivalent.
Assume first that (i) holds and consider a nontrivial A ∈ K`. Let

D = {δA(~a) : δ ∈ T and~a is a tuple of elements in A}.

By assumption, 1 6∈ D. We will verify that the set D is closed under the join operation.
Let cq1 ∨ ε1(~x1) and cq2 ∨ ε2(~x2) be any terms in T and~a1,~a2 tuples of elements in A.
Put q := max(q1, q2). Then

cq1 ∨ εA
1 (~a1) ∨ cq2 ∨ εA

1 (~a2) = cq ∨ εA
1 (~a1) ∨ εA

2 (~a2) ∈ D.

By Lemma 4.2, there exists a prime filter F of A such that D ∩ F = ∅. Furthermore,
A/F is a chain, by Theorem 4.1. And since D ∩ F = ∅, the algebra A/F validates all
sentences ∀~x δ(~x) 6≈ 1 with δ ∈ T. In particular, A/F validates all sentences listed in
Theorem 6.2 and, using this theorem, A/F validates the universal theory of QP.

To prove (ii), we will reason by contraposition. Accordingly, consider a positive
existential sentence Ψ that fails in QP. Then its negation ¬¬Ψ is equivalent to a uni-
versal sentence valid in QP. Using the fact just proved, we infer that ¬¬Ψ is valid in
A/F. Consequently, Ψ does not hold in A/F. Since A/F is a homomorphic image of
A and Ψ is a positive existential sentence (and, therefore, it persists in homomorphic
images), Ψ is not valid in A, thus establishing condition (ii).

Now assume (ii) holds. Let δ(~x) ∈ T and let A be a nontrivial algebra in K`. By
the specification imposed on the parameters in δ and the fact that QP is a chain, the
sentence ∃~x δ(~x) ≈ 1 fails in QP. By assumption, this implies that it also fails in A.
Hence, ∀~x δ(~x) 6≈ 1 holds in A. This shows that the condition (i) holds. �

In order to prove Theorem 6.2, let us first collect a few relevant facts. By an `-group
we denote a lattice-ordered abelian group; an o-group is a totally ordered `-group.
There exists a categorical equivalence between the class of product chains and the
class of o-groups (see [12] for an extension to a broader class of product algebras and
`-groups). Let us formulate a relevant part of this equivalence.

Proposition 6.10 ([45, Thm. 4.1.8], [48, Thm. 2]). Let A be a nontrivial product chain.
Then there exists an o-group Λ(A) such that its negative cone {g ∈ Λ(A) : g 6Λ(A) 1}
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coincides with A r {0} and for every a, b ∈ A r {0} we have

1A = 1Λ(A), a 6A b if and only if a 6Λ(A) b, a ·A b = a ·Λ(A) b,

a→A b =

{
1Λ(A) if a 6A b
b ·Λ(A) (a−1)Λ(A) otherwise.

Notice that Λ(A) is unique up to isomorphism. For Λ(R−P ) and Λ(Q−P ) we take
the (multiplicative) groups of positive reals and positive rationals.

We will rely on the following results.

Theorem 6.11 ([76, Thm. 5.3]). Let A be a rational product chain such that cq <A 1 for
some (equiv. every) q ∈ (0, 1) ∩Q. Then A partially embeds into RP.

Theorem 6.12. [52, Thm. II.1.6] Let m ∈ ω. Let F be a free abelian group of rank m and G
a nontrivial subgroup of F. Then G is a free abelian group. Moreover, there exists a basis
{e1, . . . , em} of F and positive integers k 6 m and d1, . . . , dk such that {ed1

1 , ed2
2 , . . . , edk

k } is
a basis of G.

We are now ready to prove Theorem 6.2.

Proof. The sentences in the statement are valid in QP. Thus it suffices to prove that
every rational product algebra A validating them also validates the universal theory
of QP. To show this, it suffices to prove that every such rational product algebra A
partially embeds into QP. Although we will use Theorem 6.11, the result could not
be obtained by partially embedding first A into RP and then RP into QP, because RP
cannot be partially embedded into QP (for instance, ∃x (x2 ≈ c1/2) holds in RP, but
fails in QP).

Accordingly, consider a rational product algebra A validating the sentences in
the statement. Clearly, A is a chain, as it validates ∀xy(x 6 y∨∨ y 6 x). Moreover,
since cq 6≈ 1 for q ∈ [0, 1) ∩Q, we may assume that QP 6 A. Let B be a finite partial
subalgebra of A. We will find an embedding h : B → QP. To this end, we may
assume without loss of generality that B contains cA

q for some q ∈ (0, 1) ∩Q and
moreover that 1A ∈ B and 0A 6∈ B. Let A− and Q−P be the product algebra reducts of
A and of QP. Let also Λ(A−) and Λ(Q−P ) be the o-groups associated with A− and
Q−P respectively as in Proposition 6.10. Clearly Q−P 6 A−, whence we may assume
that Λ(Q−P ) 6 Λ(A−). Moreover, 0A /∈ B gives B ⊆ Λ(A−).

Consider the set C of constants. An expansion Λ(A) with the constants from C
of the o-group Λ(A−) is obtained by interpreting each c ∈ C in the expansion with
the element that interprets c in A. The expansions Λ(RP) and Λ(QP) are defined
analogously from Λ(R−P ) and Λ(Q−P ).

Claim 6.13. Λ(A) is partially embeddable into Λ(RP).

Proof of the Claim. Let D be any finite set of elements in Λ(A). We may assume,
without loss of generality, that D is closed under reciprocals. By Theorem 6.11,
there exists an embedding g : D ∩ A → (0, 1] of the finite partial subalgebra of A
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with universe D ∩ A into RP. Let f : D → (0, ∞) be given by f (d) = g(d) if d 6 1,
otherwise f (d) = g(d−1)−1. Then f is an embedding of the finite partial subalgebra
of Λ(A) with universe D into Λ(RP). For instance, consider c, d ∈ D such that
c 6 1, d > 1 and c · d ∈ D. Then g(c) = g(c · d · d−1) = g(c · d) · g(d−1). Thus,
f (c · d) = g(c · d) = g(c) · g(d−1)−1 = f (c) · f (d). �

Let GB be the o-subgroup of Λ(A−) generated by B. (Then GB is generated by
B also as a group.) Let also QB be the o-subgroup of Λ(A−) whose universe is the
intersection of GB with the universe of Λ(Q−P ). Clearly, QB is also a o-subgroup of
GB. As B is finite, GB is finitely generated. Furthermore, since the multiplication in
Λ(A−) preserves the strict order <, GB is torsion free. Thus, the group reduct of GB
is free. Lastly, cq ∈ B ∩Q ⊆ QB, whence QB is nontrivial. Applying Theorem 6.12
we obtain a basis {e1, . . . , em} for the group reduct of GB, and positive integers k 6 m
and d1, . . . , dk such that {ed1

1 , . . . , edk
k } is a basis for the group reduct of QB. Since GB

is totally ordered and multiplication is order preserving, we can also assume that
e1, . . . , em 6 1A.

Claim 6.14. We have e1, . . . , ek ∈ (0, 1) ∩Q.

Proof of the Claim. Let i ∈ {1, . . . , k} and q := edi
i . Since q belongs to the basis for

QB and QB ⊆ Q, we obtain that q is rational. Moreover, as edi
i = cA

q , the sentence
∀x (xdi 6≈ cq) fails in A, so it is not among the axioms in Theorem 6.2. It follows that
di
√

q is rational. As QP 6 A, this yields di
√

q ∈ A. We obtain that edi
i = q = ( di

√
q)di in

A. As taking powers is injective in product algebras, this yields ei = di
√

q ∈ Q. �

Therefore, we may assume that di = 1, for all 1 6 i 6 k. Summarizing the
situation, {e1, . . . , em} is a basis for GB while {e1, . . . , ek} a basis for QB. Therefore,
every element b ∈ B can be represented as

b = elb
1

1 · · · · · e
lb
m

m

for unique integers lb
1, . . . , lb

m. Let

l := max{|lb
i | : i ∈ {1, . . . , m} and b ∈ B},

where |lb
i | is the absolute value of lb

i . Moreover let C0 = {ej1
1 · · · · · e

jm
m : ji ∈

Z and |ji| 6 l for all i 6 m} and let C0 be the finite partial subalgebra of Λ(A)
with universe C0. We have B ⊆ C0 ⊆ GB. Let f : C0 → (0, ∞) be an embedding of
C0 into Λ(RP) as in Claim 6.13. Notice that if q ∈ C0 ∩ QB, then f (q) = q. This is
because C0 is closed under reciprocals and, since cΛ(A)

q′ is defined for q′ := min(q, 1/q),
we have

f (cΛ(A)
q′ ) = cΛ(RP)

q′ = q′ and f (1/q′) = 1/ f (q′).

Let C = C0 ∩ A and C be the partial subalgebra of A on C. Since C extends B, to
conclude the proof, it suffices to show that C embeds into QP. Define

∆ := min {s/r : r, s ∈ f [C] and r < s} and d := 2·lm√
∆.



STRUCTURAL COMPLETENESS IN MANY-VALUED LOGICS WITH RATIONAL CONSTANTS 23

Notice that d > 1. Clearly, e1, . . . , em ∈ C.
For every i ∈ {1, . . . , m} we pick a number ri in (0, 1) ∩Q as follows. For i 6 k,

let ri := ei = f (ei). This is possible, because ei is rational by Claim 6.14. For i > k,
let ri be any element in (0, 1) ∩Q subject to the bounds ri/ f (ei) < d and f (ei)/ri < d. It
follows from the density of Q in R that such an ri exists.

Finally, we define a function h : C → (0, 1] by putting, for c ∈ C,

h(c) := rlc
1

1 · · · · · r
lc
m

m .

We will verify that h is an embedding of C into QP.

Claim 6.15. For every q ∈ (0, 1] ∩Q such that cA
q ∈ C, we have h(cA

q ) = q.

Proof of the Claim. Since cA
q ∈ C is rational and in GB, there are unique l1, . . . , lk such

that cA
q = el1

1 · · · e
lk
k with |li| 6 l for i 6 k. Since QP 6 A and e1, . . . , ek ∈ [0, 1] ∩Q,

this implies that el1
1 · · · e

lk
k = q, where multiplication is computed in QP. As h is the

identity map on the set {e1, . . . , ek}, the statement follows. �

Claim 6.16. The map h is order preserving and injective on C. Consequently, h[C] ⊆
(0, 1] ∩Q and h preserves the lattice operations.

Proof of the Claim. Consider an arbitrary c ∈ C. Since all elements ej1
1 · · · e

jm
m , where

|ji| 6 l, belong to C0, by Claim 6.13 we have f (c) = f (e1)
lc
1 · · · f (em)lc

m . (However,
these elements are not necessarily in C, which is why we extend partial embeddability
to o-groups in Claim 6.13.) Thus,

h(c)
f (c)

=

(
r1

f (e1)

)lc
1

· · · · ·
(

rm

f (em)

)lc
m

< dlm =
√

∆.

Similarly,
f (c)
h(c)

<
√

∆.

Applying the above inequalities and the definition of ∆, for c1, c2 ∈ C such that
c1 < c2 we obtain

h(c1) < f (c1) ·
√

∆ =
f (c1) ·∆√

∆
6

f (c2)√
∆

< h(c2).

Finally, as we assumed that 1A ∈ B ⊆ C, it follows that h(c) 6 h(1A) = 1 for every
c ∈ C. Since we assumed that 0A 6∈ B, we conclude that 0 6∈ f [C]. �

Claim 6.17. If c1, c2, c3 ∈ C and c1 ·A c2 = c3, then h(c1) ·QP h(c2) = h(c3).

Proof of the Claim. This follows from the uniqueness of the numbers lc
i , where c ∈

{c1, c2, c3} and i ∈ {1, . . . , m}. �

Claim 6.18. If c1, c2, c3 ∈ C and c1 →A c2 = c3, then h(c1)→QP h(c2) = h(c3).
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Proof of the Claim. If c3 = 1, then c1 6 c2. Thus, by Claim 6.16, h(c1) 6 h(c2) and,
therefore, h(c1) →QP h(c2) = 1 = h(c3). If c1 > c2, by Proposition 6.10, we have
c3 = c2 ·GB (c−1

1 )GB . Thus, we have lc3
i = lc2

i − lc1
i for i ∈ {1, . . . , m}. Moreover, by

Claim 6.16, h(c1) > h(c2). Therefore, we obtain

h(c3) = rlc2
1 −l

c1
1

1 · · · · · rlc2
m −l

c1
m

m = h(c2) ·Λ(QP) (h(c1)
−1)Λ(QP) = h(c1)→QP h(c2). �

Hence, h : C → QP is an embedding. This concludes the proof of 6.2. �

Lastly, we present a proof of Theorem 6.1.

Proof. Let ` be the structural completion of RP. By Theorem 3.2(i), ` is the unique ex-
tension of RP algebraized by Q(FmRPA(ω)), which by Lemma 6.9(iii) equals Q(QP).
Because of this, the problem of axiomatizing ` relative to RP is equivalent to that of
axiomatizing Q(QP) relative to RPA. We will therefore focus on the latter.

Let T be the set of all terms cp or cq ↔ xn with p, q ∈ (0, 1) ∩Q, n ∈ ω, and n
√

q
irrational. Moreover, let A ∈ RPA. Clearly if A belongs to Q(QP), then A validates
all quasieqequations δ(x) ∨ z ≈ 1 =⇒ z ≈ 1 with δ(x) ∈ T, since they all hold in QP
(recall that δQP(a) < 1 for δ(x) ∈ T, a ∈ [0, 1] ∩Q). Now assume, on the other hand,
that A validates all these quasiequations.

Claim 6.19. Let a ∈ A r 1. Then there exists a filter Fa of A such that a 6∈ Fa and A/Fa
validates the universal theory of QP.

Proof of the Claim. For k ∈ ω, let

Dk := {a ∨ δ1(b1) ∨ · · · ∨ δk(bk) : δ1(x), . . . , δk(x) ∈ T and b1, . . . bk ∈ A},

and define D :=
⋃{Dk : k ∈ ω}.

We will prove that 1 /∈ Dk, by induction on k. As a 6= 1 and D0 = {a}, we have
1 6∈ D0. Suppose that 1 6∈ Dk−1 and, towards a contradiction, that a ∨ δ1(b1) ∨ · · · ∨
δk(bk) = 1 for some δ1(x), . . . , δk(x) ∈ T and b1, . . . bk ∈ A. Since A satisfies the
quasiequation z∨ δk(x) ≈ 1 =⇒ z ≈ 1, we obtain that a∨ δ1(b1)∨ · · · ∨ δk−1(bk−1) =
1 (consider an assignment which maps z onto a∨ δ1(b1)∨ · · · ∨ δk−1(bk−1) and x onto
bk). This contradicts the assumption that 1 6∈ Dk−1. Hence, we conclude that

1 /∈
⋃

k∈ω

Dk = D.

As D is closed under the join operation and does not contain 1, by Lemma 4.2,
there exists a prime filter Fa of A such that F ∩ D = ∅. In particular, a 6∈ Fa. It
remains to show that A/Fa validates the sentences listed in Theorem 6.2, i.e., that
A/Fa is a chain and for every δ ∈ T and b/Fa ∈ A/Fa we have δ(b/Fa) 6= 1. By
Theorem 4.1, the primeness of Fa yields that A/Fa is a chain. Then consider δ ∈ T
and b/Fa ∈ A/Fa. By definition of D, we have a ∨ δ(b) ∈ D. As Fa ∩D = ∅ and Fa is
an upset, this yields δ(b) /∈ Fa. Consequently, δ(b/Fa) 6= 1, as desired. �
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For a ∈ A r {1} let Fa be a filter as in Claim 6.19. Then all algebras A/Fa are in
Q(QP). Moreover, as

⋂{Fa : a ∈ A r {1}} = {1}, the algebra A embeds into the
product ∏{A/Fa : a ∈ A r {1}}. This yields that A ∈ Q(QP).6 �

7. EXTENSIONS OF RATIONAL GÖDEL LOGIC

The lattice of extensions of Gödel logic G is notoriously transparent:

Theorem 7.1 ([25]). Every extension of G is axiomatic and the lattice of extensions of G is
a chain of order type ω + 1. Consequently, G is HSC.

In algebraic parlance, the above result states that the quasivariety of Gödel algebras
is primitive, whence G is HSC in view of Theorem 3.2(ii). In this section, we shall see
that the addition of rational constants to G complicates the structure of the lattice of
(axiomatic) extensions of RG.
Given a real r ∈ (0, 1], let Qr be the rational Gödel algebra with universe

([0, r) ∩Q) ∪ {1}
The order relation of Qr is the natural order in Q. Accordingly, Qr is a chain. This
settles the interpretation of the lattice connectives and of the implication (as for all
a, c ∈ Qr we get a → c = 1 if a 6 c, and a → c = c otherwise). Finally, given a
rational q ∈ [0, 1], the interpretation of of cq in Qr is q if q ∈ Qr, and 1 otherwise.
Notice that if r = 1, then Q1 = QG.
Fix a denumerable set {tn : n ∈ ω} disjoint from [0, 1]. Given a rational p ∈ [0, 1)∩Q

and an ordinal γ ∈ ω + 1, let Qγ
p be the rational Gödel algebra with the universe

([0, p] ∩Q) ∪ {1} ∪ {tn : n < γ}
defined as follows. The order relation of Qγ

p is given by the rule

a 6 c⇐⇒ either c = 1 or (a, c ∈ [0, 1] and a 6Q c) or (a ∈ [0, 1) and c /∈ [0, 1])

or (a = tn and c = tm, for some n 6 m).

Accordingly, Qγ
p is a chain. Similarly to the case of Qr, this settles the interpretation

of the lattice connectives and of the implication. And given a rational q ∈ [0, 1], the
interpretation of cq in Qγ

p is q if q ∈ Qγ
p , and 1 otherwise.

Theorem 7.2. The following hold:
(i) Every nontrivial variety K of rational Gödel algebras is of the form V(Qr) for some

r ∈ (0, 1] or V(Qγ
p) for some γ ∈ ω + 1 and p ∈ [0, 1) ∩Q . Furthermore, V(Qr) is

axiomatized by the equations {cq ≈ 1 : q ∈ [r, 1] ∩Q} and V(Qγ
p) is axiomatized by

the equations {cq ≈ 1 : q ∈ (p, 1] ∩Q} and( ∨
06i<j6n+2

(cp ∨ xi)↔ (cp ∨ xj)
)
≈ 1

if γ = n ∈ ω, and by {cq ≈ 1 : q ∈ (p, 1] ∩Q} otherwise.

6The above argument can be replaced by the use of [21, Cor. 3.8] or [17, Cor. 6].
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(ii) For all r1, r2 ∈ (0, 1], p1, p2 ∈ [0, 1) ∩Q, and γ1, γ2 ∈ ω + 1,

V(Qr1) ⊆ V(Qr2)⇐⇒ r1 6 r2,

V(Qr1) ⊆ V(Qγ1
p1 )⇐⇒ r1 6 p1,

V(Qγ1
p1 ) ⊆ V(Qr1)⇐⇒ p1 < r1,

V(Qγ1
p1 ) ⊆ V(Qγ2

p2 )⇐⇒ either p1 < p2 or (p1 = p2 and γ1 6 γ2).

(iii) V(RGA) is an uncountable chain isomorphic to the poset obtained adding a new bottom
element to the Dedekind–MacNeille completion of the lexicographic order of [0, 1) ∩Q

and ω + 1.

Remark 7.3. The axiomatization given in item (i) can be simplified for varieties of the
form V(Qq) with q ∈ Q∩ (0, 1], as these can be axiomatized by the single equation
cq ≈ 1. On the other hand, varieties of the form V(Qr) with r ∈ (0, 1]r Q do not
admit a finite axiomatization. �

In view of the dual isomorphism between the lattice of axiomatic extensions of RG
and V(RGA), the above result provides a full description of the former as well.

Given a logic ` and a set of formulas Σ, we denote by `+ Σ the extension of `
axiomatized relative to ` by Σ.

Corollary 7.4. Every consistent axiomatic extension of RG is of the form
RGr := RG + {cq : q ∈ [r, 1] ∩Q} for some r ∈ (0, 1],
RGω

p := RG + {cq : q ∈ (p, 1] ∩Q} for some rational p ∈ [0, 1) or
RGn

p := RGω
p +

∨
06i<j6n+2(cp ∨ xi)↔ (cp ∨ xj) for some rational p ∈ [0, 1) and n ∈ ω.

Moreover, the lattice of axiomatic extensions of RG is an uncountable chain dually isomorphic
to the poset obtained adding a new bottom element to the Dedekind–MacNeille completion of
the lexicographic order of [0, 1) ∩Q and ω + 1.

On the other hand, the structure of the lattice of arbitrary extensions of RG is still
largely unknown. For instance, the problem of determining whether the variety of
rational Gödel algebras is Q-universal is still open. However, it is easy to see that it
has uncountable chains and antichains. For chains, this is a consequence of Corollary
7.4, while for antichains it suffices to notice that {Q(Qr) : r ∈ (0, 1]} ∪ {Q(Q0

p) : p ∈
[0, 1) ∩Q} is a set of minimal quasivarieties (this can be proved by adapting the
argument for the minimality of Q(QP) in the proof of Corollary 6.5).

The rest of the section is dedicated to the proof of Theorem 7.2. We begin by the
following observation:

Proposition 7.5. For every nontrivial rational Gödel chain A, there are r ∈ (0, 1], p ∈
[0, 1) ∩Q, and γ ∈ ω + 1 such that ISPU(A) = ISPU(Qr) or ISPU(A) = ISPU(Q

γ
p).

Moreover,
(i) ISPU(Qr) is axiomatized relative to the class of RGA chains by the sentences

cq′ 6≈ 1 for all q′ ∈ [0, r) ∩Q and cq ≈ 1 for all q ∈ [r, 1] ∩Q;
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(ii) ISPU(Qω
p ) is axiomatized relative to the class of RGA chains by the sentences

cp 6≈ 1 and cq ≈ 1 for all q ∈ (p, 1] ∩Q;

(iii) ISPU(Qn
p) is axiomatized relative to the class of RGA chains by the sentences

cp 6≈ 1, cq ≈ 1 for all q ∈ (p, 1] ∩Q, and

∀x0 . . . xn+2

( ∨
06i<j6n+2

(cp ∨ xi)↔ (cp ∨ xj)
)
≈ 1.

Proof. Let A be a rational Gödel chain. We shall define an algebra SA that embeds
into A. To this end, let C be the zero-generated subalgebra of A. Since A is nontrivial,
C = Qr for some r ∈ (0, 1] or C = Q0

p for some p ∈ [0, 1) ∩Q. If C = Qr for some
r ∈ (0, 1] then let SA := C. If C = Q0

p for some p ∈ [0, 1) ∩Q, then let ↓(C r {1}) be
the downset of (C r {1}) in A. If ω 6 |A r ↓(C r {1})|, take SA := Qω

p . While if
|A r ↓(C r {1})| = n + 1 ∈ ω, take SA := Qn

p. In both cases, SA ∈ IS(A). Therefore,
in order to prove that SA and A have the same universal theory, it suffices to show
that A partially embeds into SA.

To this end, consider a finite partial subalgebra B of A. The elements of B can
be divided into those that are not the interpretation of any constant (denoted by
a1, . . . , an) and those that are (denoted by cA

q1
, . . . , cA

qm). For the sake of simplicity, we
may assume that

0 = cA
q1
< cA

q2
< · · · < cA

qm = 1.

As A is a chain, [cA
q1

, cA
q2
), . . . , [cA

qm−1
, cA

qm) is a partition of A r {1}.
Then consider the map h : B → SA defined as follows. For every i 6 m− 1, let

ai1 < · · · < aik be the elements of {a1, . . . , an} in the i-th component [cA
qi

, cA
qi+1

) of the
above partition and choose some bi1 , . . . , bik ∈ SA such that

cSA
qi < bi1 < · · · < bik < cSA

qi+1 .

If i 6= m− 1, this is possible because [cSA
qi , cSA

qi+1) is an infinite set. While if i = m− 1,
this can be done by the construction of SA. Then let h(aik) := bik . Furthermore, we
set h(cA

q ) = cA
q = cSA

q , for every q ∈ {q1, . . . , qm}. This completes the definition of h.
As in Gödel chains the behaviour of the implication is fully determined by the order
structure, h : B→ SA is an embedding, as desired. We conclude that A and SA have
the same universal theory.

(i): Let A be a rational Gödel chain validating the sentences in the statement. Then
the zero-generated subalgebra of A is Qr. Thus, SA = Qr. Consequently, A and Qr
have the same universal theory and, in particular, A ∈ ISPU(Qr).

(ii): Let A be a rational Gödel chain validating the sentences in the statement.
Then the zero-generated subalgebra of A is Q0

p. Thus, SA ∈ {Qγ
p : γ ∈ ω + 1}.

Furthermore, since A and SA have the same universal theory, A ∈ ISPU(SA). Thus,

A ∈ ISPU(SA) ⊆ ISPUS(Qω
p ) = ISPU(Q

ω
p ).
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(iii): Let A be a rational Gödel chain validating the sentences in the statement. An
argument similar to the one detailed for case (ii) shows that SA ∈ {Qγ

p : γ ∈ ω + 1}.
Moreover, since A validates

∀x0 . . . xn+2

( ∨
06i<j6n+2

(cp ∨ xi)↔ (cp ∨ xj)
)
≈ 1,

we obtain that |A r ↓(C r {1})| = m + 1 for some m 6 n, where C is the universe of
the zero-generated subalgebra of A. Thus, SA = Qm

p , for some m 6 n. Consequently,

A ∈ ISPU(SA) = ISPU(Q
m
p ) ⊆ ISPUS(Qn

p) ⊆ ISPU(Q
n
p). �

Corollary 7.6. Every variety of rational Gödel algebras is generated by a set of algebras of
the form Qr, where r ∈ (0, 1], or Qγ

p , where p ∈ [0, 1) ∩Q and γ ∈ ω + 1.

Proof. Recall that every variety is generated by its subdirectly irreducible members.
As every subdirectly irreducible rational Gödel algebra is a chain, the result follows
from Proposition 7.5. �

Proof of Theorem 7.2. (ii): Consider r1, r2 ∈ (0, 1], p1, p2 ∈ [0, 1)∩Q and γ1, γ2 ∈ ω+ 1.
We need to prove that

V(Qr1) ⊆ V(Qr2)⇐⇒ r1 6 r2.

To prove the implication from left to right, we reason by contraposition. Accordingly,
assume that r2 < r1. Since Q is dense in R, there exists a rational r2 6 q < r1.
Consequently, the equation cq ≈ 1 holds in Qr2 , but fails in Qr1 , whence Qr1 /∈ V(Qr2).
To prove the implication from right to left, if r1 6 r2, then Qr1 ∈ H(Qr2) ⊆ V(Qr2).

Then we turn to prove that

V(Qr1) ⊆ V(Qγ1
p1 )⇐⇒ r1 6 p1.

If r1 6 p1 then Qr1 ∈ H(Qγ1
p1 ) ⊆ V(Qγ1

p1 ). If p1 < r1, then there exists a rational
p1 < q < r1. Consequently, the equation cq ≈ 1 holds in Qγ1

p1 , but fails in Qr1 , whence
Qr1 /∈ V(Qγ1

p1 ).
Now, we will show that

V(Qγ1
p1 ) ⊆ V(Qr1)⇐⇒ p1 < r1.

If p1 < r1, every finite partial subalgebra of Qγ1
p1 embeds into some member of

{Qq : q ∈ (p1, r1] ∩ Q}. This implies that Qγ1
p1 validates the universal theory of

{Qq : q ∈ (p1, r1] ∩Q}. Consequently, Qγ1
p1 ∈ ISPU({Qq : q ∈ (p1, r1] ∩Q}). As

{Qq : q ∈ (p1, r1] ∩Q} ⊆ H(Qr1), this yields Qγ1
p1 ∈ V(Qr1). If r1 6 p1, then cp1 ≈ 1

holds in Qr1 , but fails in Qγ1
p1 , whence Qγ1

p1 /∈ V(Qr1).
Lastly, we will prove that

V(Qγ1
p1 ) ⊆ V(Qγ2

p2 )⇐⇒ either p1 < p2 or (p1 = p2 and γ1 6 γ2).

We prove the implication from left to right by contraposition. Assume that either
p2 < p1 or (p1 = p2 and γ2 < γ1). First suppose that p2 < p1, then there exists
a rational p2 < q < p1. Consequently, the equation cq ≈ 1 holds in Qγ2

p2 , but fails
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in Qγ1
p1 , whence Qγ1

p1 /∈ V(Qγ2
p2 ). Then suppose that p1 = p2 = q ∈ [0, 1) ∩Q and

γ2 < γ1. Since γ2 < γ1, necessarily γ1 > 0. Furthermore, from γ2 < γ1 ∈ ω + 1 it
follows that γ2 = n for some n ∈ ω. Since q < 1 and γ2 = n, the interval [cq, 1] in
Qγ2

q is an (n + 2)-element set, whence

Qγ2
p2 �

∨
06i<j6n+2

(cq ∨ xi)↔ (cq ∨ xj) ≈ 1.

On the other hand, since p1 = q and γ1 > γ2 = n, the interval [cq, 1] in Qγ1
p1 has size

> n + 2. Consequently the above equation fails in Qγ1
p1 , whence Qγ1

p1 /∈ V(Qγ2
p2 ).

To prove the implication from right to left, if p1 < p2, by previous items, V(Qγ1
p1 ) ⊆

V(Qp2) ⊆ V(Qγ2
p2 ). If p1 = p2 and γ1 6 γ2, then Qγ1

p1 ∈ S(Qγ2
p2 ) ⊆ V(Qγ2

p2 ).
(i): Let K be a nontrivial variety of rational Gödel algebras. In view of Corollary

7.6, K is generated by a nonempty set of algebras {Ai : i ∈ I} of the form Qr or Qγ
p ,

where r ∈ (0, 1], p ∈ [0, 1) ∩Q, and γ ∈ ω + 1. We shall define an algebra S of the
previous type such that K = V(S). Let

s = sup
{

r ∈ [0, 1] : Qr ∈ {Ai : i ∈ I} or Qγ
r ∈ {Ai : i ∈ I} for some γ ∈ ω + 1

}
.

If there exists γ ∈ ω + 1 such that Qγ
s ∈ {Ai : i ∈ I}, let S := Qδ

s where δ =
sup

{
γ ∈ ω + 1 : Qγ

s ∈ {Ai : i ∈ I}
}

. Otherwise, let S := Qs. By (ii), K ⊆ V(S). If
S ∈ {Ai : i ∈ I}, trivially V(S) ⊆ K. If S 6∈ {Ai : i ∈ I}, then either S = Qs or
Qω

s . In both cases, every finite partial subalgebra in S embeds into some member
of {Ai : i ∈ I}. As a consequence, S validates the universal theory of {Ai : i ∈ I},
whence S ∈ ISPU({Ai : i ∈ I}) ⊆ K. We conclude that K = V(S) and, therefore, that
every variety of rational Gödel algebras is generated by an algebra of the form Qr or
Qγ

p .
In order to axiomatize varieties of the form V(Qγ

p), let Σ be the set of equations
given by the statement. First observe that Qγ

p � Σ. Then consider a rational Gödel
algebra A /∈ V(Qγ

p). As we showed in the above paragraph, the variety V(A) is
generated by an algebra of the form of the form Qr for some r ∈ (0, 1] or Qδ

p′ for
some p′ ∈ [0, 1) ∩Q and δ ∈ ω + 1. If V(A) = V(Qr), since A /∈ V(Qγ

p), we get
V(Qr) * V(Qγ

p). By (ii), p < r. Thus, there is a rational p < q < r such that cQr
q 6= 1.

In that case, Qr 2 Σ, whence A 2 Σ. If V(A) = V(Qδ
p′), since A /∈ V(Qγ

p), we get

V(Qδ
p′) * V(Qγ

p). By (ii), either p < p′ or p = p′ and γ < δ. If p < p′, similar to the

previous case Qδ
p′ 2 cp′ ≈ 1, whence A 2 Σ. If p = p′ and γ < δ, then γ = n ∈ ω and

Qδ
p′ 2

( ∨
06i,j6n+2

(cp ∨ xi)↔ (cp ∨ xj)
)
≈ 1,

whence A 2 Σ. Thus, we conclude that Σ axiomatizes V(Qγ
p).

It only remains to axiomatize varieties of the form V(Qr) for r ∈ (0, 1]. Since
cQq

q = 1 for every rational q ∈ [r, 1], the equations in the statement are valid in
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V(Qr). A similar argument as in the case of varieties of the form V(Qγ
p) shows that

if A 6∈ V(Qr), then there is a rational r 6 q < 1 such that A 2 cq ≈ 1.
(iii): Let V(RGA)− be the poset of nontrivial varieties of rational Gödel algebras.

Notice that V(RGA)− is indeed a complete lattice and that V(RGA) is obtained adding
a new bottom element to V(RGA)−. Therefore, to conclude the proof, it suffices to
show that V(RGA)− is isomorphic to the Dedekind–MacNeille completion [60] of the
poset X obtained by endowing the direct product

([0, 1) ∩Q)× (ω + 1)

with the lexicographic order of Q and ω + 1. By (i) and (ii), the map f : X →
V(RGA)−, defined by

f (〈q, γ〉) :=


V(Qγ

0 ), if q = 0;
V(Qq) if q 6= 0 and γ = 0;
V(Qn

q ) if q 6= 0 and γ = n + 1;
V(Qω

q ) if q 6= 0 and γ = ω,

is an order embedding. Furthermore, f [X] is both join-dense and meet-dense in
the complete lattice V(RGA)−. As, up to isomorphism, the Dedekind–MacNeille
completion of a poset Y is the only completion in which Y is both join-dense and
meet-dense [3, Prop. 1] (see also [9]), we conclude that V(RGA)− is isomorphic to the
Dedekind–MacNeille completion of X, as desired. �

8. STRUCTURAL COMPLETENESS IN RATIONAL GÖDEL LOGIC

It is well known that G is HSC [25]. While this is false for RG, it is still possible to
obtain a full characterization of structural completeness and its variants in extensions
of RG. The next result characterizes PSC extensions of RG.

Theorem 8.1. The following are equivalent for an extension ` of RG:
(i) ` is PSC;

(ii) ` is algebraized by a quasivariety with the JEP;
(iii) ` is algebraized by a quasivariety whose nontrivial members have isomorphic zero-

generated subalgebras.

The other variants of structural completeness turn out to be equivalent among
extensions of RG.

Theorem 8.2. The following are equivalent for an extension ` of RG:
(i) ` is HSC;

(ii) ` is SC;
(iii) ` is ASC;
(iv) ` is algebraized by a quasivariety K generated by a chain A.

Furthermore, in condition (iv) A can be chosen either trivial or of the form Qr or Qγ
p , where

r ∈ (0, 1], p ∈ [0, 1) ∩Q and γ ∈ ω + 1.
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Proof of Theorem 8.1. The implication (i)⇒(ii) is a consequence of Proposition 3.4,
while (ii)⇒(iii) is straightforward.

(iii)⇒(i): Let K be the quasivariety algebraizing `. In view of Theorem 3.2(iii),
it suffices to show that every two nontrivial members validate the same positive
existential sentences. To this end, consider two nontrivial A, B ∈ K. By assumption
the zero-generated algebra C of A and of B coincide.

By Lemma 4.2, the set F of prime filters F of A such that F ∩ C = {1} is nonempty,
and we can apply Zorn’s lemma, obtaining a maximal F ∈ F . As F is prime, by
Theorem 4.1 A/F is a chain. By construction of F we know that the zero-generated
subalgebra of A/F is isomorphic to C. Therefore, we may assume, without loss of
generality, that C 6 A/F. Clearly, either Qr or Q0

p is the zero-generated subalgebra of
A/F, namely C. Furthermore, by the maximality of F, we get that if a ∈ A/F is strictly
larger than all the elements of Cr {1}, then a = 1. Together with Proposition 7.5, this
yields that ISPU(A/F) = ISPU(Qr) for some r ∈ (0, 1] or ISPU(A/F) = ISPU(Q0

p) for
some p ∈ [0, 1) ∩Q. Thus, A/F ∈ ISPU(C). Since C 6 B, this yields A/F ∈ ISPU(B).
Then there exists an embedding fA : A/F → Bu, where Bu is an ultrapower of B.
Let gA : A → A/F be the canonical surjection. Then the composition hA : fA ◦ gA
is a homomorphism from A to Bu. Since positive existential sentences persist in
homomorphic images, extensions, and ultraroots, we conclude that every positive
existential sentence that is true of A is also true of B. �

In order to prove Theorem 8.2, we rely on the following observation.

Proposition 8.3. Let K be a nontrivial subquasivariety of RGA and FmK(ω) its denumer-
ably generated free algebra. Then there are r ∈ [0, 1), p ∈ [0, 1) ∩Q and γ ∈ ω + 1 such
that Q(FmK(ω)) = Q(Qr) or Q(FmK(ω)) = Q(Qγ

p).

Proof. By Theorem 7.2, there are r ∈ [0, 1), p ∈ [0, 1) ∩Q, and γ ∈ ω + 1 such that
FmK(ω) is the denumerably generated free algebra of V(Qr) or V(Qγ

p). This yields
that FmK(ω) is also the denumerably generated free algebra of Q(Qr) or Q(Qγ

p),
whence Q(FmK(ω)) ⊆ Q(Qr) or Q(FmK(ω)) ⊆ Q(Qγ

p). If FmK(ω) = FmV(Qr)(ω),
then Qr is the zero-generated subalgebra of FmK(ω). Whence Q(Qr) ⊆ Q(FmK(ω)).
Similarly, if FmK(ω) = FmV(Q0

p)
(ω), then Q(Q0

p) ⊆ Q(FmK(ω)). Finally, assume
FmK(ω) = FmV(Qγ

p)
(ω) with γ > 0. Notice that

Qγ
p ∈ ISPU({Qn

p : n ∈ ω and 1 6 n 6 γ}).
Consequently, to conclude the proof, it suffices to show that each Qn

p (where n ∈ ω

and 1 6 n 6 γ) embeds into FmK(ω). This can be done by a straightforward
adaptation of the method described in [25] for the case of Gödel algebras without
constants.

We shall sketch it for the sake of completeness. For every 1 6 n 6 γ such that
n ∈ ω, the algebra Qn

p is the chain consisting of the interval [0, p]∩Q on top of which
we added the n + 1 element chain

t0 < t1 < · · · < tn−1 < 1.
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Then Qn
p can be embedded into FmK(ω) using the map that is the identity on ([0, p]∩

Q) ∪ {1} and that sends ti to the (equivalence class of) the formula ϕi, where

ϕ0 := cp ∨ x2 ∨ (x2 → x1) and ϕj+1 := xj+2 ∨ (xj+2 → ϕj). �

Proof of Theorem 8.2. The implications (i)⇒(ii) and (ii)⇒(iii) are straightforward.
(iii)⇒(ii): Let K be the quasivariety algebraizing ` and FmK(ω) its denumerably

generated free algebra. Suppose, with a view to contradiction, that ` is not SC. As `
is ASC, this means that it is not PSC. In view of Theorem 8.1, there is a zero-generated
algebra C ∈ K different from the zero-generated subalgebra FmK(0) of FmK(ω).
Clearly, there is q ∈ [0, 1) ∩Q such that the equation cq ≈ 1 holds in C, but not
in FmK(ω). Furthermore, by Proposition 8.3 there are r ∈ (0, 1], p ∈ [0, 1) ∩ Q,
and γ ∈ ω + 1 such that Q(FmK(ω)) = Q(Qr) or Q(FmK(ω)) = Q(Qγ

p). Let then
A ∈ {Qr, Qγ

p} be such that Q(FmK(ω)) = Q(A). In particular, A 2 cq ≈ 1. As A is a
chain, we have

A � x ∨ cq ≈ 1 =⇒ x ≈ 1.
Since ` is ASC, by Theorem 3.2(iv) C× FmK(0) ∈ Q(FmK(ω)) = Q(A), whence

C× FmK(0) � x ∨ cq ≈ 1 =⇒ x ≈ 1.

But this is false, as witnessed by the assignment x 7−→ 〈0, 1〉. Hence, we conclude
that ` is PSC and, therefore, SC.

(ii)⇒(iv): Suppose that ` is SC. By Theorem 3.2(i) and Proposition 8.3, ` is alge-
braized by a quasivariety that is either trivial or of the form Q(Qr) for some r ∈ (0, 1]
or Q(Qγ

p) for some p ∈ [0, 1) ∩Q and γ ∈ ω + 1.
(iv)⇒(i): If ` is algebraized by the trivial quasivariety, then ` is clearly HSC. Then

we consider the case where it is algebraized by a quasivariety Q(A) where A is a
nontrivial chain. By Proposition 7.5 we can assume that A = Qr for some r ∈ (0, 1]
or A = Qγ

p for some p ∈ [0, 1) ∩Q and γ ∈ ω + 1.
Suppose first that A = Qr. Since the zero-generated subalgebra of every nontrivial

member of Q(Qr) is Qr, the quasivariety Q(Qr) is minimal and, therefore, ` is HSC.
Then we consider the case where A = Qγ

p . In view of Theorem 3.2(i), to prove
that ` is HSC, it suffices to show that every subquasivariety of Q(Qγ

p) is generated
as a quasivariety by its denumerably generated free algebra. This is true for Q(Qγ

p),
by Proposition 8.3. Then consider a proper subquasivariety K of Q(Qγ

p). Since K is
nontrivial, Q0

p ∈ K. On the other hand, as K is proper, Qγ
p /∈ K. Consequently, there

is n ∈ ω such that for all m ∈ ω + 1,

Qm
p ∈ K⇐⇒ m 6 n.

Together with Proposition 8.3, this implies Q(FmK(ω)) = Q(Qn
p). In particular,

K �
( ∨

06i<j6n+2

(cp ∨ xi)↔ (cp ∨ xj)
)
≈ 1.

Now, let A ∈ K. As A ∈ Q(Qγ
p), we know that A is a subdirect product of algebras

that are relatively subdirectly irreducible in Q(Qγ
p). Since Q(Qγ

p) = ISPPU(Q
γ
p),
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these algebras belong to ISPU(Q
γ
p) and, therefore, are chains. Thus, A is a subdirect

product of chains {Ci : i ∈ I} in Q(Qγ
p). Furthermore, as A validates the equation in

the above display, so do the various Ci. In view of Proposition 7.5 and the fact that
Ci ∈ Q(Qγ

p), this implies that

{Ci : i ∈ I} ⊆ ISPU({Q0
p, . . . , Qn

p}) ⊆ ISPU(Q
n
p).

Thus, A is a subdirect product of members of Q(Qn
p). Since Q(Qn

p) = Q(FmK(ω)),
we conclude that A ∈ Q(FmK(ω)). Thus, K is generated as a quasivariety by
FmK(ω), as desired. �

The next result presents bases for the admissible rules on all the axiomatic exten-
sions of RG.

Theorem 8.4. The following holds for every r ∈ (0, 1], p ∈ [0, 1) ∩Q, and γ ∈ ω + 1:
(i) A base for the admissible rules of RGr is given by the rules of the form cq ∨ z � z, for

all q ∈ [0, r) ∩Q;
(ii) A base for the admissible rules of RGγ

p is given by the rule cp ∨ z � z.

Proof. After Theorem 8.2, the structural completion of RGr is algebrized by Q(Qr)
and that of RGγ

p by Q(Qγ
p). Thus, in order to obtain a base for admissible rules of

RGr and RGγ
p , it suffices to find an axiomatization of Q(Qr) and Q(Qγ

p) relative to
V(Qr) and V(RGγ

p), respectively. By Proposition 7.5 and Theorem 7.2, the universal
class of Qr is axiomatized relative to V(Qr) by cq 6≈ 1 for all q ∈ [0, r) ∩Q. Using a
similar argument as in the proof of Theorem 6.1, Q(Qr) is axiomatized relative to
V(Qr) by cq ∨ z ≈ 1 =⇒ z ≈ 1 for all q ∈ [0, r) ∩Q. Similarly, Q(Qγ

p) is axiomatized
relative to V(Qγ

p) by cp ∨ z ≈ 1 =⇒ z ≈ 1. �

9. RATIONAL ŁUKASIEWICZ LOGIC

The lattice of axiomatic extensions of Ł is denumerable and its structure was
completely described in [58], see also [11, Chpt. 8]. On the other hand, the variety of
MV-algebras is well known to beQ-universal [1]. We conclude this paper by showing
that the addition of constants trivializes the lattice of extensions of RŁ.

Theorem 9.1. The logic RŁ has no proper consistent extensions and, therefore, is HSC.

The rest of this section is dedicated to the proof of the theorem. Recall that Q−Ł
denotes the subalgebra of R−Ł on the rational numbers in [0, 1] and Łn+1 is the
subalgebra on {0, 1/n, . . . , n−1/n, n}. The algebra Q−Ł generates MV as a quasivariety,
as the following proposition shows:7

Proposition 9.2 ([2, Thm. 17]). Assume a MV-quasiequation Φ does not hold in MV
(equivalently, in R−Ł ). Then there is a natural number n such that Φ does not hold in Łn+1.

7In fact, by [34, Thm. 2.5], ISPU(R−Ł ) and ISPU(Q
−
Ł ) coincide.
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The details for the next paragraph can be found in [45], see also [49]. Let A be
an MV-algebra, a an element of its universe, ϕ(x1, . . . , xn) a term in the language of
MV-algebras, and 1 6 i 6 n. The equation ϕ ≈ 1 implicitly defines a in variable xi in A
provided that there are c1, . . . , cn ∈ A such that ϕA(c1, . . . , cn) = 1A and, moreover,
for every c1, . . . , cn ∈ A,

if v(c1, . . . , cn) = 1A, then ci = a.

The element a is said to be implicitly definable in A if there is an equation that
implicitly defines it.

Proposition 9.3 ([45, Lems. 3.3.11 & 3.3.13]).
(i) Each rational number r ∈ (0, 1) is implicitly definable in R−Ł .

(ii) If T ∪ {α ≈ β} is a finite set of equations in variables ~x and constants cr1 , . . . , crk in
the language of rational MV-algebras, T0 is a (finite) set of equations in the language of
MV-algebras implicitly defining each ri, 1 6 i 6 k, in distinct variables zi (not among
~x) in R−Ł , and T?, α?, β? result from T, α, β by replacing the constant cri with variable
zi respectively for 1 6 i 6 k, then T �RŁ α ≈ β if and only if T0 ∪ T? �R−Ł

α? ≈ β?;
(iii) Under the conditions and notation of (ii), also T �QŁ α ≈ β if and only if T0 ∪ T? �Q−Ł

α? ≈ β?.

Proof. Part (i) is [45, Lem. 3.3.11] and part (ii) is the proof method of [45, Lem. 3.3.13]:
the variables zi, under the theory implicitly defining the finitely many rational
constants, act semantically as the respective constants. Since the interpretation of
constants is with the rationals, the argument can be carried out for the algebras QŁ
and Q−Ł , which justifies (iii), even though not explicit in [45]. �

Notice that, in contrast to the situation in Gödel or product algebras, the interpre-
tation of the constant cr with the rational r is the only possible in the algebra R−Ł ; see
under Thm. 26 in [27] for an explicit mention of this fact.

Proposition 9.4 ([45, Lem. 3.3.14], [27, Prop. 24]). RMV = Q(RŁ).

Lemma 9.5. RŁ and QŁ generate the same quasivarieties.

Proof. Let Φ = (ϕ1 ≈ ψ1 ∧∧ . . .∧∧ ϕn ≈ ψn) =⇒ ϕ ≈ ψ be a quasiequation in the
language of RMV. Moreover let cr1 , . . . , crk be the constants in Φ, and assume T0 is a
finite conjunction of equations in the language of MV-algebras that implicitly define
r1, . . . , rk in R−Ł in some pairwise distinct variables z1, . . . , zk not occurring in Φ. (We
further assume that any auxiliary variables in the defining equations for ri, rj, where
i 6= j, are also distinct.) Notice that T0 exists by Proposition 9.3(i). Finally, let Φ?

result from Φ by replacing the rational constants cr1 , . . . , crk with z1, . . . , zk. Notice
that Φ? is an quasiequation in the language of MV-algebras.

It is enough to show that QŁ � Φ implies RŁ � Φ. To that end, assume RŁ 2 Φ; by
Proposition 9.3(ii) this is equivalent to R−Ł 2 T0 =⇒ Φ?. Moreover, using Proposition
9.2, there is a natural number n such that Łn+1 2 T0 =⇒ Φ?. Since each finite MV-
chain is isomorphic to a subalgebra of Q−Ł , we may conclude that Q−Ł 2 T0 =⇒ Φ?.
Finally, the latter is the case if and only if QŁ 2 Φ, applying Proposition 9.3(iii). �
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Proposition 9.6. Let A ∈ RMV be nontrivial. Then QŁ 6 A.

Proof. Any nontrivial A ∈ RMV has a subalgebra that is a homomorphic image of QŁ,
and since the latter is simple and A lacks trivial subalgebras, we get QŁ 6 A. �

Proof of Theorem 9.1. We will show that RMV is a minimal quasivariety. By Proposi-
tion 9.6, QŁ 6 A whenever A ∈ RMV is nontrivial. Thus, for any nontrivial class
K ⊆ RMV, we have Q(QŁ) ⊆ Q(K). Combining Proposition 9.4 and Lemma 9.5, we
get RMV = Q(QŁ); since we know the latter to be included in Q(K), and given that
K was arbitrarily chosen, the minimality of RMV follows. �
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