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ABSTRACT. A deductive system is said to be structurally complete if its admissible rules are
derivable. In addition, it is called hereditarily structurally complete if all its extensions are
structurally complete. Citkin (1978) proved that an intermediate logic is hereditarily structurally
complete if and only if the variety of Heyting algebras associated with it omits five finite
algebras. Despite its importance in the theory of admissible rules, a direct proof of Citkin’s
theorem is not widely accessible. In this paper we offer a self-contained proof of Citkin’s
theorem, based on Esakia duality and the method of subframe formulas. As a corollary, we
obtain a short proof of Citkin’s 2019 characterization of hereditarily structurally complete
positive logics.

1. INTRODUCTION

A rule ρ is said to be admissible in a deductive system ` if the set of tautologies of ` is closed
under the applications of ρ. On the other hand, a rule ρ is called derivable in ` if ρ belongs to
the consequence relation of the system.1 Clearly, every derivable rule is admissible. While
the converse holds for classical propositional calculus CPC, it fails for many non-classical
systems, including intuitionistic propositional calculus IPC.

This motivated the study of criteria for admissibility in modal and intermediate logics,
undertaken by Rybakov and others [66]. As a consequence, the problem of finding bases for
admissible rules was solved for IPC by Iemhoff [40, 41, 42], building on the work of Ghilardi
[35, 36] on unification, and independently by Rozière [63]. Later on, similar results have been
obtained for modal and Łukasiewicz logics by Jeřábek [44, 45, 46], see also [54].

A classical problem in the theory of admissible rules is to determine which deductive
systems are structurally complete, i.e., share with CPC the property that all admissible rules are
derivable. Addressing this question, Prucnal [58] showed that all finitary extensions of the
〈→〉-fragment of IPC are structurally complete. Notably, his argument extends immediately
to the 〈∧,→〉-fragment of IPC [59]. Subsequently, a similar result was obtained by Dzik and
Wrónski [28], who proved that all finitary extensions of Gödel-Dummet logic are structurally
complete.

These investigations suggested that, while a full characterization of structurally complete
intermediate logics could be out of reach, still it might be possible to describe intermediate
logics that are structurally complete in a hereditary way, i.e., not only they are structurally
complete, but so are all their finitary extensions. This was confirmed by Citkin [19], who
proved that an intermediate logic ` is hereditarily structurally complete if and only if the
variety of Heyting algebras associated with it, denoted by K`, omits five finite algebras
C1, . . . , C5 (or, equivalently, no Ci is a model of `). Since then, the relation between structural
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1Formal definitions are detailed in Section 2.
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completeness and its hereditary version in intermediate logics has been further investigated
in [21].

Despite being one of the important milestones in the theory of admissible rules, Citkin’s
proof has never been published in English—the only detailed proof is in Russian [20]. Yet
another source for it is a generalization to axiomatic extensions of the modal system K4 by
Rybakov [65, 66] which, in turn, is not self-contained (e.g., it relies on Fine’s completeness
theorem for extensions of K4 of finite width [31]).2 Accordingly, the goal of this paper is
to provide a new proof of Citkin’s theorem based on Esakia duality [29, 30] in the hope to
make it more widely available (Theorem 7.3). Apart from its simplicity, our approach has the
advantage of yielding a new short proof (see Section 8) of Citkin’s recent characterization of
hereditarily structurally complete positive logics, i.e., 〈∧,∨,→〉-fragments of intermediate
logics [22].

In order to compare our approach with the earlier ones, we note that all these proofs (i.e.,
Citkin’s, Rybakov’s and ours) of Citkin’s theorem essentially consist of three steps:
1. Showing that each Ci induces a structurally incomplete logic;
2. Proving that the intermediate logics ` for which K` does not contain any Ci are locally

tabular;
3. Showing that for each of these logics `, the finite subdirectly irreducible members of K`

are weakly projective in K`.
While the first step is an easy exercise, the second and the third require a nontrivial argument.
Our strategy for them differs substantially from the previous ones and is based almost
entirely on Esakia duality. Let ` be an intermediate logic such that K` does not contain any
Ci. First, using subframe formulas (see, e.g., [17, Ch. 9] and [7]), we prove that ` extends the
Kuznetsov-Gerčiu logic [33, 49] of linear sums of one-generated Heyting algebras. When
combined with the technique of universal models (see, e.g., [17, Ch. 8] and [10, Sec. 3.2]),
this easily implies that ` is locally tabular. Furthermore, the connection with the Kuznetsov-
Gerčiu logic allows to obtain a transparent description of the finite subdirectly irreducible
members of K` which, in turn, yields that they are weakly projective in K`. Citkin’s proof
of the second and third steps is purely algebraic, while Rybakov’s proof requires more
complex arguments on universal models and relies on modal companions [26, 51] and Fine’s
completeness theorem.

The paper is organized as follows. In Section 2 we introduce the main definitions of the
paper. We also discuss our main proof strategy: The problem of characterizing hereditarily
structurally complete intermediate logics is equivalent to that of describing primitive varieties
of Heyting algebras. In the rest of the paper we focus on the latter problem. In Section 3 we
review the main tool of the paper, Esakia’s duality for Heyting algebras. Building on Esakia
duality, in Section 4 the description of finitely generated free Heyting algebras by means of
universal models is recalled. In Section 5 we introduce Citkin’s five finite algebras C1, . . . , C5,
and show that these are omitted by any primitive variety of Heyting algebras (Lemma 5.1),
thus proving one direction of Citkin’s theorem. To prove the other direction, we shift the
focus to varieties of Heyting algebras omitting C1, . . . , C5, which are investigated in Section
6 by means of subframe formulas. In particular, we show that these varieties are locally
finite and we describe the structure of their finite subdirectly irreducible members (Theorem
6.13). Section 7 completes the proof of Citkin’s theorem (Theorem 6.13 and Corollary 7.8).
The obtained results and techniques are employed, in Section 8, to derive a new proof of
Citkin’s description of hereditarily structurally complete positive logics (Corollary 8.3). We

2An error in the statement and proof of Rybakov’s theorem has been amended in [16].
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conclude the paper by Section 9 where we review some important properties of hereditarily
structurally complete intermediate and positive logics.

2. HEREDITARY STRUCTURAL COMPLETENESS

Let Fm be the set of formulas in countably many variables of some fixed, but arbitrary,
algebraic language. A deductive system is a consequence relation `,3 defined over the set of
formulas Fm, that is substitution-invariant in the following sense: for every substitution σ
and set of formulas Γ ∪ {ϕ} ⊆ Fm,

if Γ ` ϕ, then σ[Γ] ` σ(ϕ).

In addition, all the deductive systems ` considered in this paper will be assumed to be
finitary, in the sense that for every set Γ ∪ {ϕ} ⊆ Fm,

if Γ ` ϕ, then there exists a finite set ∆ ⊆ Γ such that ∆ ` ϕ.

Let ` be a deductive system. A deductive system `′ is said to be an extension of ` if for
every set Γ ∪ {ϕ},

if Γ ` ϕ, then Γ `′ ϕ.
A rule is an expression of the form Γ � ϕ where Γ is a finite subset of Fm. Let ` be a

deductive system. A rule Γ � ϕ is said to be admissible in ` if for all substitutions σ:

if ∅ ` σ(γ) for all γ ∈ Γ, then ∅ ` σ(ϕ).

Similarly, a rule Γ � ϕ is said to be derivable in ` if Γ ` ϕ. Accordingly, we say that
1. ` is structurally complete if every rule that is admissible in ` is also derivable in `.
2. ` is hereditarily structurally complete if every extension of ` is structurally complete.
For further variants of structural completeness, we refer the reader to [27, 53, 55, 69].

Under certain assumptions, hereditary structural completeness can be formulated in purely
algebraic terms [3, 53, 60]. To explain how this could be done, it is convenient to recall some
basic definitions from universal algebra [4, 15]. We denote by I,H,S,P,PU the class operators
of closure under isomorphism, homomorphic images, subalgebras, direct products, and
ultraproducts, respectively. We assume direct products and ultraproducts of empty families
of algebras are trivial algebras. A variety is a class of algebras axiomatized by equations
or, equivalently, a class of algebras closed under H,S and P. A quasi-variety is a class of
algebras axiomatized by quasi-equations or, equivalently, a class of algebras closed under
I,S,P and PU. As a consequence, every variety is a quasi-variety, while the converse is not
true in general. Given a class of algebras K, we denote by V(K) and Q(K), respectively, the
least variety and quasi-variety containing K. It is well known that V(K) = HSP(K) and
Q(K) = ISPPU(K). When K is a variety, we say that a class M ⊆ K is a subvariety (resp.
subquasi-variety) of K if M is a variety (resp. a quasi-variety). Then a variety K is said to be
primitive if every subquasi-variety of K is a variety.

When a deductive system ` is algebraized by a variety K in the sense of [14], the lattice of
axiomatic extensions of ` is dually isomorphic to that of subvarieties of K. In addition, an
axiomatic extension `′ of ` is hereditarily structurally complete if and only if the subvariety
of K corresponding to `′ is primitive [60, Thm. 6.12(2)], see also [3, Prop. 2.4]. Consequently,

3In the literature, intermediate logics are usually identified with sets of formulas, as opposed to consequence
relations [17]. However, we opted for this presentation since when dealing with the distinction between
admissible and derivable rules, it is convenient to identify every intermediate logic with the consequence relation
associated with it.
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in this case the task of characterizing hereditarily structurally complete axiomatic extensions
of ` is equivalent to that of characterizing primitive subvarieties of K.

A special instance of this phenomenon is given by intermediate logics, i.e., axiomatic ex-
tensions of intuitionistic propositional logic IPC. This is because IPC is algebraized by the
variety of Heyting algebras, i.e., algebras of the form A = 〈A;∧,∨,→, 0, 1〉where 〈A;∧,∨, 0, 1〉
is a bounded lattice with minimum 0 and maximum 1 such that for every a, b, c ∈ A,

a ∧ b 6 c⇐⇒ a 6 b→ c.

Thus the task of characterizing hereditarily structurally complete intermediate logics can
be rephrased in purely algebraic terms as that of describing primitive varieties of Heyting
algebras. This is what we do in the rest of the paper.

To this end, we rely on some basic observation. Let K be a variety. An algebra A ∈ K is said
to be weakly projective in K if for every B ∈ K, if A ∈ H(B), then A ∈ IS(B).4 Moreover, an
algebra A is said to be finitely subdirectly irreducible, FSI for short, when the identity relation is
meet-irreducible in the congruence lattice of A. The following result is essentially [38, Cor.
2.1.17]:

Lemma 2.1. Let K be a primitive variety of finite type. The finite nontrivial FSI members of K are
weakly projective in K.

Proof. Consider a finite nontrivial FSI algebra A ∈ K. Then let B ∈ K be such that A ∈ H(B).
Since K is primitive, all its subquasi-varieties are varieties, whence A ∈ H(B) ⊆ V(B) =
Q(B). Now, it is well known that all FSI members of Q(B) belong to ISPU(B) [23, Lem. 1.5].
Thus A ∈ ISPU(B). Since A is finite and nontrivial, and the type of K is finite, this yields
A ∈ IS(B). We conclude that A is weakly projective in K. �

A variety is said to be locally finite when its finitely generated members are finite. We also
rely on the following observation [38, Prop. 5.1.24], see also [37].

Theorem 2.2. A locally finite variety K of finite type is primitive if and only if its finite nontrivial
FSI members are weakly projective in K.

3. ESAKIA DUALITY

The study of Heyting algebras is simplified by their topological representation, known
as Esakia duality [29, 30], which we will briefly recall here. Given a poset 〈X;6〉 and a set
U ⊆ X, the smallest upset and downset containing U are denoted respectively by ↑U and
↓U. In case U = {x}, we shall write ↑x and ↓x instead of ↑{x} and ↓{x}, respectively. Then
an Esakia space X = 〈X; τ,6〉 comprises a zero-dimensional compact Hausdorff space〈X; τ〉
and a poset 〈X;6〉 such that

(i) ↑x is closed for all x ∈ X, and
(ii) ↓U is clopen, for every clopen U ⊆ X.

Observe that the topology of finite Esakia spaces is necessarily discrete (because they are
Hausdorff), and that finite posets endowed with the discrete topology are Esakia spaces. We
will make a systematic use of this observation, since most Esakia spaces considered in this
paper will be finite.

4This concept should not be confused with the stronger classical notion of projectivity. Also, observe that our
terminology differs from that of [3], where weakly projective algebras are called primitive, and primitive varieties
are called deductive.
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For Esakia spaces X and Y , an Esakia morphism f : X → Y is a continuous order-preserving
map f : X → Y such that for all x ∈ X and y ∈ Y,

if f (x) 6 y, then there is z ∈ X such that x 6 z and f (z) = y. (1)

Esakia duality states that the category ESP of Esakia spaces endowed with Esakia mor-
phisms is dually equivalent to the category HA of Heyting algebras and Heyting algebra
homomorphisms [30, Thm. 3.4.4].

The dual equivalence functors are defined as follows. Given a Heyting algebra A, we
denote the set of its (non-empty proper) prime filters of A by PrA, and set

γA(a) := {F ∈ PrA : a ∈ F} (2)

for every a ∈ A. It turns out that the structure A∗ := 〈PrA; τ,⊆〉 is an Esakia space, where
τ is the topology on PrA with subbasis {γA(a) : a ∈ A} ∪ {γA(a)c : a ∈ A}. Moreover, for
every Heyting algebra homomorphism f : A→ B, let f∗ : B∗ → A∗ be the Esakia morphism
defined by the rule F 7→ f−1[F].

Conversely, let X be an Esakia space. We denote by CupX the set of clopen upsets of
X. Then the structure X∗ := 〈CupX;∩,∪,→, ∅, X〉, where U → V := X r ↓(U rV), is a
Heyting algebra. Moreover, for every Esakia morphism f : X → Y , let f ∗ : Y∗ → X∗ be the
homomorphism of Heyting algebras given by the rule U 7→ f−1[U].

Esakia duality is witnessed by the pair of contravariant functors

(−)∗ : HA←→ ESP : (−)∗.
Observe that the dual equivalence functors preserve finiteness.

Let X be an Esakia space. An Esakia subspace (E-subspace for short) of X is a closed upset
of X, equipped with the subspace topology and the restriction of the order. For every x ∈ X,
the upset ↑x endowed with the subspace topology is easily seen to be an E-subspace of X.

A bisimulation equivalence on X is an equivalence relation R on X such that for every
x, y, z ∈ X,

(i) if 〈x, y〉 ∈ R and x 6 z, then there is w ∈ ↑y such that 〈z, w〉 ∈ R, and
(ii) if 〈x, y〉 /∈ R, then there is a clopen U such that x ∈ U and y /∈ U, which in addition is a

union of equivalence classes of R.
In this case, we denote by X/R the Esakia space consisting of the quotient space of X with
respect to R, equipped with the partial order 6X/R defined as follows for every x, y ∈ X:

x/R 6X/R y/R⇐⇒ there are x′, y′ ∈ X such that

〈x, x′〉, 〈y, y′〉 ∈ R and x′ 6X y′.

The map x 7→ x/R for every x ∈ X is an Esakia morphism from X to X/R, and the kernel of
f is a bisimulation equivalence on X for every Esakia morphism f : X → Y . If, moreover, f is
surjective, then X/ ker f ∼= Y .

Remark 3.1. Observe that condition (i) in the definition of a bisimulation equivalence is
equivalent to the requirement that for every x, y, z ∈ X such that 〈x, y〉 ∈ R, 〈x, z〉 /∈ R, x 6= y,
and x 6 z, there is y 6 w ∈ X such that 〈z, w〉 ∈ R. We rely on this observation without
further notice. �

The disjoint union X1 ] · · · ] Xn of finitely many Esakia spaces X1, . . . , Xn is their order-
disjoint and topologically disjoint union, which is also an Esakia space.

Lemma 3.2. Let A be a Heyting algebra.
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(i) A is FSI if and only if its top element is prime (i.e., if x ∨ y = 1 then x = 1 or y = 1), or,
equivalently, the poset underlying A∗ is rooted (i.e., it has a least element).

(ii) There is a dual lattice isomorphism σ from the congruence lattice of A to that of E-subspaces of
A∗, such that (A/θ)∗ ∼= σ(θ) for any congruence θ of A, and for any E-subspace Y of A∗, we
have Y∗ ∼= A/σ−1(Y).

(iii) There is a dual lattice isomorphism ρ from the lattice of subalgebras of A to that of bisimulation
equivalences on A∗, such that if B is a subalgebra of A then B∗ ∼= A∗/ρ(B), and if R is a
bisimulation equivalence on A∗ then (A∗/R)∗ ∼= ρ−1(R).

(iv) The disjoint union of finitely many Esakia spaces X1, . . . , Xn is isomorphic to the dual of the
direct product of the Heyting algebras X∗1 , . . . , X∗n .

The statement of (i) is well known (see for instance [5, Thm. 2.9]). Condition (ii) is [30,
Thm. 3.4.16], while, condition (iii) was established in [29] (alternatively, see [9, Lem. 3.4]).
The proof of (iv) is as for Boolean algebras, cf. [15, Lem. IV.4.8].

Remark 3.3. Proofs in this paper would often require the reader to check whether there exists
a surjective Esakia morphism between two given finite Esakia spaces. To simplify this task,
we shall recall a general criterion. Let X be a finite Esakia space and x, y ∈ X.
1. Suppose that y is the only immediate successor of x. Then let R be the least equivalence

relation on X such that 〈x, y〉 ∈ R. Observe that R is a bisimulation equivalence on X. The
natural map f : X → X/R is called an α-reduction.

2. Suppose that the set of immediate successors of x ans y coincide. Then the least equivalence
relation R on X such that 〈x, y〉 ∈ R is a a bisimulation equivalence on X, and the natural
map f : X → X/R is called a β-reduction.
Now, let X and Y be finite Esakia spaces. In [10, Lem. 3.1.7] it is shown that there exists a

surjective Esakia morphism f : X → Y if and only if there exists a finite sequence f1, . . . , fn of
α or β-reductions fi : Zi → Zi+1 such that Z1 = X and Zn+1

∼= Y . In other words, in order to
determine whether there exists a surjective Esakia morphism from X to Y , it suffices to check
whether X can be “transformed” into Y by means of α and β-reductions. �

4. UNIVERSAL MODELS

Even if finitely generated free Heyting algebras are not fully understood, major insights in
their dual structure were provided by [2, 39, 64, 67], see also [11, 24, 32, 34]. Our presentation
is reminiscent of [10] and [17]. Given 1 6 n ∈ ω and a poset 〈X;6〉, an element x ∈ X is said
to have depth n if the upset ↑x contains at least one chain of length n, and no chain of length
n + 1. Moreover, a finite sequence of zeros and ones is said to be a colour. Given two colours
of the same length a = 〈a1, . . . , an〉 and c = 〈c1, . . . , cn〉, we set

a 6 c⇐⇒ ai 6 ci for every i = 1, . . . , n, and
a < c⇐⇒ a 6 c and ai < ci for some i = 1, . . . , n.

Accordingly, when we write a 6 c or a < c, it should be understood that the colours a and c
have the same length.

For every n ∈ ω, we shall define a poset U(n) = 〈U(n);6〉 as the union of a chain of
posets {Dm : 1 6 m ∈ ω}. To this end, observe that there are exactly 2n distinct colours of
length n. Then let D1 be a set of 2n elements painted with distinct colours of length n, and
D1 = 〈D1;61〉 the poset obtained equipping D1 with the discrete partial order. Moreover,
if Dm has already been defined, then let Dm+1 be the poset obtained extending Dm in
accordance to the following rules:
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(i) For every point x of Dm of depth m and of colour a, and every colour c < a, we add to
Dm a unique point y painted with c such that

↑Dm+1 y = {y} ∪ ↑Dm x;

(ii) For every antichain Z in Dm such that |Z| > 2 containing at least one point of depth m,
and every colour c such that c 6 a for every colour a of some element in Z, we add to
Dm a unique point y painted with c such that

↑Dm+1 y = {y} ∪ ↑Dm Z.

It is clear that Dm is a subposet of Dm+1 for every 1 6 m ∈ ω, whence it makes sense to
define U(n) as the union of the chain {Dm : 1 6 m ∈ ω}. The importance of the poset U(n)
is captured by the following observation:

Theorem 4.1. Let n ∈ ω, and let F(n) be the free n-generated Heyting algebra.
(i) U(n) is isomorphic to the topology-free reduct of the subposet of F(n)∗ consisting of the elements

of finite depth.
(ii) If x ∈ F(n)∗, then either x has finite depth or for every 1 6 n ∈ ω there is an element

y ∈ F(n)∗ of depth n such that x 6 y.
(iii) For all m ∈ ω, the poset U(n) has only finitely many points of depth 6 m.

The statements of (i) and (ii) are [10, Thms. 3.2.9 and 3.1.10(4)], which in turn follow from
Kuznetsov’s theorem [48] (see also [18], [8, Lem. 2.2(3)], and [10, Claim 3.1.11]). Item (iii)
follows immediately from the definition of U(n).

Corollary 4.2. Let n ∈ ω, and let F(n) be the free n-generated Heyting algebra. If X is an infinite
E-subspace of F(n)∗, then X contains an element of depth m for every 1 6 m ∈ ω.

Proof. Consider an infinite E-subspace X of F(n)∗ and suppose, with a view to contradiction,
that X does not contain any element of depth m for some 1 6 m ∈ ω. We have two cases:
either X contains an element of infinite depth or not. If X contains an element of infinite
depth, then we obtain a contradiction because of condition (ii) of Theorem 4.1. Then all
elements of X must have finite depth and, therefore, depth < m. As X is infinite, this means
that X has infinitely many elements of depth < m. Moreover, since X is an E-subspace of
F(n)∗, the same holds for F(n)∗. But this contradicts conditions (i) and (iii) of Theorem 4.1.
Thus we have arrived at a contradiction. �

In the rest of the paper we will rely on the following observation, which follows from [20,
Lem. 18] or, alternatively, can be deduced from Kuznetsov’s theorem [48]. The proof supplied
below differs from that of [20], however, as it uses duality and universal models.

Theorem 4.3. Let K be a variety of Heyting algebras. Then K is locally finite if and only if K has, up
to isomorphism, only finitely many finite n-generated FSI members, for every n ∈ ω.

Proof. The “only if” part is straightforward. To prove the “if” part, we reason by contrapostion:
suppose that K is not locally finite. Then there is some n ∈ ω and an n-generated infinite
algebra A ∈ K. Clearly A is a homomorphic image of the free n-generated Heyting algebra
F(n), whence A∗ can be identified with an E-subspace of F(n)∗ in the light of condition (ii) of
Lemma 3.2. Moreover, the fact that A is infinite guarantees that so is A∗. As a consequence,
we can apply Corollary 4.2, obtaining that for every 1 6 m ∈ ω there is an element xm ∈ A∗
of depth m.

Now, the E-subspace ↑A∗xm of A∗ is isomorphic to an FSI homomorphic image Am :=
(↑A∗xm)∗ of A by conditions (i) and (ii) of Lemma 3.2, whence Am ∈ H(A) ⊆ K. Moreover,
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by conditions (i) and (iii) of Theorem 4.1 the upset ↑A∗xm is finite and, therefore, so is Am.
Thus {Am : 1 6 m ∈ ω} is a sequence of finite n-generated FSI members of K.

Moreover, observe that the size of the spaces {↑A∗xm : 1 6 m ∈ ω} is not bounded by any
natural number, as each xm has depth m. As a consequence, also the cardinality of the algebras
{Am : 1 6 m ∈ ω} cannot be bounded by any natural. Since the algebras Am are finite, we
conclude that there must an infinite subset C ⊆ {Am : 1 6 m ∈ ω} of pairwise nonisomorphic
algebras. Thus C is an infinite set of pairwise nonisomorphic finite n-generated FSI members
of K. �

5. CITKIN’S FIVE ALGEBRAS

Consider the following FSI Heyting algebras:

C1 C2 C3 C4 C5

• • • • •
• • • • •

• • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • •

• • • • •
•

Their dual Esakia spaces are the following rooted posets endowed with the discrete topology:

•
• • • • • •
• • • • • • • • • • • •
• • • • •

C1∗ C2∗ C3∗ C4∗ C5∗

The following result relates primitive varieties with the algebras C1, . . . , C5.

Lemma 5.1. Primitive varieties of Heyting algebras omit C1, . . . , C5.

Proof. Suppose, with a view to contradiction, that K is a primitive variety of Heyting algebras
containing some algebra in {C1, . . . , C5}. Consider the following Esakia spaces X1, . . . , X5
endowed with the discrete topology:

•
• • • • • •
• • • • • • • • • • • • •
• • • • • • • • •

X1 X2 X3 X4 X5

First observe that each Ci∗ is an E-subspace of Xi, whence by Lemma 3.2(ii)

Ci ∈ H(X∗i ) for every i = 1, . . . , 5. (3)
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Moreover, by inspection one sees that for each Ci∗ there is a bisimulation equivalence Ri on
the disjoint union Ci∗ ] Ci∗ such that Xi is isomorphic to (Ci∗ ] Ci∗)/Ri. By Lemma 3.2(iii, iv)
this implies

X∗i ∈ IS(Ci × Ci) for every i = 1, . . . , 5. (4)
On the other hand, it is not hard to check that there is no surjective Esakia morphism from Xi
to Ci∗. By Lemma 3.2(iii) this implies

Ci /∈ IS(X∗i ) for every i = 1, . . . , 5. (5)

Now, by assumption there is some i = 1, . . . , 5 such that Ci ∈ K. By (4) also X∗i ∈ K.
Moreover, by (3) and (5) we have Ci ∈ H(X∗i ) and Ci /∈ IS(X∗i ). As a consequence, we
conclude that Ci is not weakly projective in K. Since Ci is a finite nontrivial FSI member of K
and K is primitive, this contradicts Lemma 2.1. Hence we reached a contradiction. �

6. A STRUCTURE THEOREM

In this section we give a description of the structure of varieties of Heyting algebras
omitting C1, . . . , C5 (Theorem 6.13). To this end, recall that the Rieger-Nishimura lattice RN
(depicted below) is the free one-generated Heyting algebra [57, 61, 62]. As a consequence,
H(RN) is the class of all one-generated Heyting algebras.

s��@@ s@@s��s
@@
@@s��s
��

s@@��s
@@
@@s��s
��

s@@��s
@@
@@s��s
��

s@�@ qqq
s

The Rieger-Nishimura lattice RN.

Let A and B be Heyting algebras. The sum A + B is the Heyting algebra obtained by
pasting B below A, gluing the top element of B to the bottom element of A. As + is clearly
associative, there is no ambiguity in writing A1 + · · ·+ An for the descending chain of finitely
many Heyting algebras A1, . . . , An, each glued to the previous one.

Then the Kuznetsov-Gerčiu variety is defined as follows:

KG := V({A1 + · · ·+ An : A1, . . . , An ∈ H(RN) and 0 < n ∈ ω}). (6)

The variety KG was introduced in the study of finite axiomatizability, and of the finite model
property in varieties of Heyting algebras [33, 49] (see also [6, 10, 56]). We shall see that
varieties of Heyting algebras omitting C1, . . . , C5 are subvarieties of KG (Theorem 6.13).

To this end, it is convenient to recall some basic concept. In [70], every finite rooted Esakia
space Z is associated with a formula β(Z) in the language of Heyting algebras, called the
subframe formula of Z (see also [7, 12, 17]). For the present purpose, the way in which subframe
formulas are concretely defined is immaterial and, to explain their importance, it is sufficient
to recall the definition of the following concept. An Esakia space Y = 〈Y; τY ,6Y〉 is called a
subspace of an Esakia space X = 〈X; τX ,6X〉, if 〈Y; τY〉 is a subspace of 〈X; τX〉, the order 6Y
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is the restriction of 6X to Y2, and for every clopen U of Y , the downset generated by U with
respect to 6X is clopen in X. The following result clarifies the role of subframe formulas [12,
Thm. 3.13]:

Theorem 6.1. Let X and Z be Esakia spaces such that Z is finite and rooted. Then X∗ � β(Z) ≈ 1
if and only if Z is not the image of an Esakia morphism, whose domain is a subspace of X.

Remark 6.2. Recall that finite Esakia spaces coincide with finite posets endowed with the
discrete topology. Thus if X is a finite Esakia space, then the above theorem specializes as
follows: X∗ � β(Z) ≈ 1 if and only if Z is not the image of an Esakia morphism, whose
domain is a subposet of X. �

For the present purpose, the interest in subframe formulas is that they provide a convenient
axiomatization of KG. To explain how this is obtained, consider the discrete rooted Esakia
spaces P1, P2, and P3 whose underlying posets are depicted below:

•
• • •

• • • • • • •
• • •
P1 P2 P3

The proof of the following result can be found in [10, Thm. 4.3.4] (see also [6, 47]):

Theorem 6.3. KG is the variety of Heyting algebras axiomatized by the equations

β(P1) ≈ 1 β(P2) ≈ 1 β(P3) ≈ 1.

Given a positive integer n, a poset 〈X;6〉 has width 6 n if there is no x ∈ X such that ↑x
contains an antichain of n + 1 elements. Accordingly, a Heyting algebra A is said to have
width 6 n when so does the poset underlying A∗.

Lemma 6.4. Let K be a variety of Heyting algebras omitting C1, . . . , C5. Every finite member of K
has width 6 2 and, therefore, satisfies β(P1) ≈ 1.

Proof. Suppose, with a view to contradiction, that there is a finite A ∈ K of width > 2. Then
A∗ contains a subposet isomorphic to P1. We label its elements as follows:

x• y• •z
⊥ •

As H(K) ⊆ K and A∗ is finite, by Lemma 3.2(ii) we can assume without loss of generality

that the following holds:

Fact 6.5.
(i) ⊥ is the minimum of A∗ and the unique common lower bound of x, y, z.

(ii) {x, y, z} in A∗ is the unique three-element antichain in ↓{x, y, z}.

Then consider the following relation on A∗:

R := {〈u, v〉 ∈ A∗ × A∗ : either u = v or u, v ∈ A∗ r ↓{x, y, z}}.
Bearing in mind that A∗ is finite and, therefore, endowed with the discrete topology, it is
easy to see that R is a bisimulation equivalence on A∗. Accordingly, we consider the Esakia
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space A∗/R. In the light of Lemma 3.2(iii), we obtain (A∗/R)∗ ∈ IS(A) ⊆ K. Therefore, we
may assume without loss of generality that R is the identity relation (otherwise, we replace
A by (A∗/R)∗ in the proof). Observe that R identifies everything in A∗r ↓{x, y, z}. Thus the
assumption that R is the identity on A∗ means that A∗ contains at most one element > not in
↓{x, y, z}. Denoting by Y the subposet ↓{x, y, z} of A∗, we obtain the following:

Fact 6.6. There is an Esakia space X such that X∗ ∈ K and one of the following holds:

(i) The poset underlying X is Y ;
(ii) Y is a subposet of X and X = {>} ∪ Y, where > strictly above exactly two elements

between x, y, z; or
(iii) Y is a subposet of X and X = {>} ∪Y, where > is the maximum of X.

Proof. Suppose that conditions (i) and (ii) fail. Then, in particular, A∗ 6= ↓{x, y, z}, otherwise
A∗ would satisfy condition (i). Consequently, A∗ = {>} ∪Y where > /∈ Y.

We shall see that > is comparable with some element among x, y, and z. Suppose the
contrary, with a view to contradiction. Then the least equivalence relation S on A∗ that
identifies > with x is easily seen to be a bisimulation equivalence on A∗. Moreover, the poset
underlying A∗/S is isomorphic to Y . As by Lemma 3.2(iii), (A∗/S)∗ ∈ IS(A) ⊆ K, taking
X := A∗/S we would obtain that condition (i) holds, which is false. Thus we conclude that
> is comparable with some element among x, y, z, as desired. We can assume without loss of
generality that this element is x. Since > /∈ Y, this implies x < >.

An argument analogous to the one described above shows that the assumption that y 
 >
and z 
 > leads to a contradiction. Then we can assume without loss of generality that y 6 >
and, therefore, y < > (as > /∈ Y). Finally, if z 
 >, then condition (ii) holds, contradicting the
assumption. Then we conclude that z 6 >, whence > is the maximum of A∗. Thus taking
X := A∗, we obtain that condition (iii) holds, as desired. �

Fact 6.7. The following relation is a bisimulation equivalence on X:

S := {〈u, v〉 ∈ X× X : {x, y, z} ∩ ↑u = {x, y, z} ∩ ↑v}.

Proof. First observe that S is an equivalence relation. Then it only remains to show that S
satisfies conditions (i) and (ii) in the definition of a bisimulation equivalence. Since X is finite,
its topology is discrete, whence condition (ii) is obviously satisfied. To prove condition (i),
consider three elements t, u, v ∈ X such that 〈t, u〉 ∈ S, 〈t, v〉 /∈ S, t 6= u, and t 6 v. We need
to find some u 6 w ∈ X such that 〈v, w〉 ∈ S. Clearly

{x, y, z} ∩ ↑v ∈ {∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}. (7)

First consider the case in which {x, y, z} ∩ ↑v = ∅. From Fact 6.6 it follows that v = >
and X = {>} ∪ Y where > /∈ Y. If condition (iii) of Fact 6.6 holds, then, by taking w := >,
we are done. Now suppose that condition (iii) of Fact 6.6 fails. Together with the fact that
X = {>} ∪ Y and > /∈ Y, this implies that condition (ii) of Fact 6.6 holds. Thus we can
assume without loss of generality that x, y < > and z 
 >. Since t 6= v = >, clearly t ∈ Y.
Now, if t ∈ ↓{x, y}, then also u ∈ ↓{x, y} (as 〈t, u〉 ∈ S). Consequently, u 6 > = v and,
by taking w := v, we are done. Next we consider the case where t /∈ ↓{x, y}. We shall
see that this case leads to a contradiction. To this end, observe that in this case t 6 z, as
t ∈ Y = ↓{x, y, z} and t /∈ ↓{x, y}. Moreover, since t 6 v = > and z 
 >, we obtain t < z.
But the fact that t 
 x, y and t < z implies that {x, y, t} is a three-element antichain in Y
different from {x, y, z}, contradicting Fact 6.5(ii).
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If {x, y, z} ∩ ↑v = {x}, then 〈v, x〉 ∈ S. Moreover, from t 6 v 6 x and 〈t, u〉 ∈ S it follows
u 6 x. Thus, by setting w := x, we are done. A similar argument works if v ∩ ↑{x, y, z} is
{y} or {z} (take respectively w := y and w := z).

By (7) it only remains to consider the case where

{x, y, z} ∩ ↑v ∈ {{x, y}, {x, z}, {y, z}, {x, y, z}}. (8)

We shall show that this case leads to a contradiction. To this end, observe that

{x, y, z} ∩ ↑v ( {x, y, z} ∩ ↑t,

since 〈t, v〉 /∈ S and t 6 v. Together with (8), this guarantees that t 6 x, y, z, whence also
u 6 x, y, z as 〈u, t〉 ∈ S. By Fact 6.5(i), we have that ⊥ is the unique common lower bound
of x, y, z, whence t = ⊥ = u, contradicting the fact that t 6= u. Thus we conclude that S is a
bisimulation equivalence on X. �

Recall that X∗ ∈ K and that S is a bisimulation equivalence on X by Facts 6.6 and 6.7. Thus
by Lemma 3.2(iii), we have that (X/S)∗ ∈ IS(X∗) ⊆ K. Accordingly, we can assume without
loss of generality that S is the identity relation on X.

Bearing this in mind, if case (i) of Fact 6.6 holds, then the poset underlying X is one of the
rooted posets depicted below (in which the elements other than ⊥, x, y, and z are marked
with squares):

• • • • • • • • • • • •
• • • • • •

• • • •
Z1 Z2 Z3 Z4

Observe that Z1
∼= C3∗ and Z3 ∼= C5∗. Moreover, there are bisimulation equivalences T

and T′, respectively on Z2 and Z4, such that Z2/T ∼= C1∗ and Z4/T′ ∼= C4∗. By Lemma
3.2(iii), this implies that IS(X∗) ∩ {C1, C3, C4, C5} 6= ∅. But, since X∗ ∈ K, we would get
K∩ {C1, C3, C4, C5} 6= ∅, contradicting the assumption that K omits C1, C3, C4, C5. Thus we
conclude that case (i) of Fact 6.6 cannot hold.

Now, suppose that case (ii) of Fact 6.6 holds. Since S is the identity, the poset underlying X
is one of the rooted posets depicted below (in which the elements other than ⊥, x, y, z, and >
are marked with squares):

• • • • •
• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
• • • • • •

Z1 Z2 Z3 Z4 Z5 Z6

For every i = 1, . . . , 6 there is a bisimulation equivalence Ti on Zi such that

Z1/T1
∼= Z2/T2 ∼= Z5/T5 ∼= Z6/T6 ∼= C1∗ and Z3/T3 ∼= C2∗ and Z4/T4

∼= C4∗.

By Lemma 3.2(iii), this implies that IS(X∗) ∩ {C1, C2, C4} 6= ∅. But, since X∗ ∈ K, we would
get K ∩ {C1, C2, C4} 6= ∅, contradicting the assumption that K omits C1, C2, C4. Thus we
conclude that also case (ii) of Fact 6.6 cannot hold.
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Thus condition (iii) of Fact 6.6 holds necessarily. Since S is the identity, the poset underlying
X is one of the rooted posets depicted below (in which the elements other than ⊥, x, y, z, and
> are marked with squares):

•
••

•
••

•
•••

•
• • • • • • • • •

• • • • • • • • •
• • • •

Z1 Z2 Z3 Z4

Observe that Z1
∼= C4∗. Moreover, for every i = 2, 3, 4 there is a bisimulation equivalence

Ti on Zi such that Z2/T2 ∼= Z3/T3 ∼= C2∗ and Z4/T4
∼= C4∗. As in the previous cases, this

implies K ∩ {C2, C4} 6= ∅, contradicting the assumption that K omits C2 and C4. Thus we
reached the desired contradiction. As a consequence, A has width 6 2. This immediately
implies that finite members of K validate β(P1) ≈ 1. �

Lemma 6.8. Let K be a variety of Heyting algebras omitting C1, . . . , C5. Every finite member of K
satisfies the equation β(P2) ≈ 1.

Proof. Suppose, with a view to contradiction, that there is a finite algebra A ∈ K in which the
equation β(P2) ≈ 1 fails. By Theorem 6.1 there is a subframe X of A∗ and a surjective Esakia
morphism from X to the space obtained endowing P2 with the discrete topology. Because of
the definition of an Esakia morphism, this implies that there is a subposet of A∗ isomorphic
to P2. We label the elements of this a copy of P2 inside A∗ as follows:

x • •y

x′• •y′

⊥ •

Moreover, by Lemma 3.2(ii) and H(K) ⊆ K, we can assume without loss of generality that
⊥ is the minimum of A∗ and the unique common lower bound of x′ and y′. In addition,
as in the proof of Lemma 6.4, we can assume without loss of generality that A∗ contains at
most one element > not in ↓{x, y}. By Lemma 6.4 we know that A∗ has depth 6 2, whence,
provided that > exists, it must be comparable either with x or y. As > 
 x, y, this implies
that either > does not exist or x < > or y < >. Consequently,

Fact 6.9. One of the following conditions holds:
(i) A∗ = ↓{x, y};

(ii) A∗ has a maximum > and A∗ = {>} ∪ ↓{x, y}; or
(iii) A∗ has a maximal element > strictly above exactly one between x and y, and A∗ =
{>} ∪ ↓{x, y}.

Observe that in case (iii) if x < > (resp. y < >), then y 
 > (resp. x 
 >), and x and y are
incomparable.

Our aim is to show that conditions (i), (ii), and (iii) lead to a contradiction. First suppose
that condition (i) holds. We shall see that for all z ∈ A∗,

{x, x′, y, y′} ∩ ↑z ∈ {{x}, {y}, {x, x′}, {y, y′}, {x, x′, y}, {y, y′, x}, {x, x′, y, y′}}. (9)

To prove this, consider z ∈ A∗. Clearly {x, x′, y, y′} ∩ ↑z is an upset of the copy of P2 in
A∗ given by {⊥, x, x′, y, y′}. Moreover, this upset must be non-empty by assumption (i),
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since z ∈ ↓{x, y}. Thus, in order to establish the above display, it suffices to show that
{x, x′, y, y′} ∩ ↑z 6= {x, y}. Suppose the contrary with a view to contradiction. Then observe
that⊥ 6 z, x′, y′ and recall that x′ and y′ are incomparable. Since A∗ has width6 2 by Lemma
6.4, this implies that z is comparable either with x′ or with y′. We can assume without loss of
generality that z is comparable with x′. Since {x, x′, y, y′} ∩ ↑z = {x, y}, this implies x′ < z
and, therefore, x′ 6 z 6 y′. But this contradicts the fact that x′ 
 y, whence establishing (9).

Then we shall see that the following relation is a bisimulation equivalence on A∗:

S := {〈u, v〉 ∈ A∗ × A∗ : {x, x′, y, y′} ∩ ↑u = {x, x′, y, y′} ∩ ↑v}.
As before, it suffices to show that condition (i) in the definition of a bisimulation equivalence
holds. To this end, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t 6= u, t < v, and 〈t, v〉 /∈ S. We
need to find an element w > u such that 〈v, w〉 ∈ S. By (9)

{x, x′, y, y′} ∩ ↑v ∈ {{x}, {y}, {x, x′}, {y, y′}, {x, x′, y}, {y, y′, x}, {x, x′, y, y′}}.
If {x, x′, y, y′} ∩ ↑v = {x}, then 〈v, x〉 ∈ S. Moreover, from t 6 v 6 x and 〈t, u〉 ∈ S it follows
u 6 x. Thus, setting w := x, we are done. A similar argument works if {x, x′, y, y′} ∩ ↑v is
{y} or {x, x′} or {y, y′} (take respectively w := y, w := x′, and w := y′). Then it only remains
to consider the case where

{x, x′, y, y′} ∩ ↑v ∈ {{x, x′, y}, {y, y′, x}, {x, x′, y, y′}}.
But an argument analogous to the one detailed in the last paragraph of the proof of Fact
6.7 shows that this case leads to a contradiction. Hence we conclude the S is a bisimulation
equivalence on A∗.

In particular, by Lemma 3.2(iii) this implies (A∗/S)∗ ∈ K. Consequently, we can assume
without loss of generality that S is the identity relation on A∗. Together with (9) and the fact
that {⊥, x, x′, y, y′} forms a subposet of A∗ isomorphic to P2, this implies that A∗ is isomorphic
to one of the following rooted posets (in which the elements other than ⊥, x, x′, y, y′ are
marked with squares):

• • • •
• • • • •
• • • • • •
• • •

Z1 Z2 Z3

Observe that C1∗ is isomorphic to an E-subspace of Z2 and Z3. Moreover, there is a bisim-
ulation equivalence T on Z1 such that Z1/T ∼= C1∗. By Lemma 3.2(ii, iii) this implies
C1 ∈ H(A) ∪ IS(A) ⊆ K, contradicting the assumption that C1 /∈ K. Thus condition (i)
cannot hold.

Next we consider the case where condition (ii) holds. An argument analogous to the one
detailed for case (i) shows that for every z ∈ A∗,

{x, x′, y, y′,>} ∩ ↑z ∈ {{>}, {x,>}, {y,>}, {x, x′,>}, {y, y′,>},
{x, x′, y,>}, {y, y′, x,>}, {x, x′, y, y′,>}}.

(10)

We shall see that the following relation is a bisimulation equivalence on A∗:

S := {〈u, v〉 ∈ A∗ × A∗ : {x, x′, y, y′,>} ∩ ↑u = {x, x′, y, y′,>} ∩ ↑v}.
To this end, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t 6= u, t < v, and 〈t, v〉 /∈ S. We need to
find an element w > u such that 〈v, w〉 ∈ S. First we consider the case where v 6= >. In this



HEREDITARILY STRUCTURALLY COMPLETE INTERMEDIATE LOGICS 15

case, v ∈ ↓{x, y} by assumption (ii). As t 6 v, we also get t ∈ ↓{x, y}. In turn, this guarantees
u ∈ ↓{x, y}, since 〈t, u〉 ∈ S. Consequently, t, u, v ∈ ↓{x, y}. This allows us to repeat the
argument detailed in the case of condition (i), obtaining the desired element w. Then it only
remains to consider the case where v = >. But assumption (ii) guarantees u 6 > = v. Thus,
by setting w := >, we are done. This establishes that S is a bisimulation equivalence on A∗.

Consequently, we can assume without loss of generality that S is the identity relation on
A∗. Together with (10) and the fact that {⊥, x, x′, y, y′,>} forms a subposet of A∗ isomorphic
to P2 plus a new top element, this implies that A∗ is isomorphic to one of the following rooted
posets (in which the elements other than ⊥, x, x′, y, y′,> are marked with squares):

• •
• • • • •

• • • • •
• • • • • •
• • •

Z1 Z2 Z3

Observe that C2∗ is isomorphic to an E-subspace of Z2 and Z3. Moreover, there is a bisim-
ulation equivalence T on Z1 such that Z1/T ∼= C2∗. By Lemma 3.2(ii, iii) this implies
C2 ∈ H(A) ∪ IS(A) ⊆ K, contradicting the assumption that C2 /∈ K. Thus also condition (ii)
cannot hold.

Consequently, by Fact 6.9 condition (iii) holds necessarily. We can assume without loss of
generality that > > x and > � y. Observe that for every z ∈ A∗,

{x, x′, y′} ∩ ↑z ∈ {∅, {x}, {y′}, {x, x′}, {x, y′}, {x, x′, y′}}. (11)

This is an immediate consequence of the fact that {x, x′, y′} ∩ ↑z must be an upset of the
subposet of A∗ with universe {x, x′, y′}.

We shall see that the following relation is a bisimulation equivalence on A∗:

S := {〈u, v〉 ∈ A∗ × A∗ : {x, x′, y′} ∩ ↑u = {x, x′, y′} ∩ ↑v}.
To prove this, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t 6= u, t < v, and 〈t, v〉 /∈ S. As usual,
we need to find an element w > u such that 〈v, w〉 ∈ S. First we consider the case where
{x, x′, y′} ∩ ↑v = ∅. Observe that {x, x′, y′} ∩ ↑t 6= ∅, since 〈t, v〉 /∈ S. Thus either t 6 x or
t 6 y′. As 〈t, u〉 ∈ S, this implies that either u 6 x or u 6 y′. Consequently, either u 6 > or
u 6 y. Observe that {x, x′, y′} ∩ ↑> = {x, x′, y′} ∩ ↑y = ∅, whence 〈>, v〉, 〈y, v〉 ∈ S. Thus
there exists some w > u (namely either > or y) such that 〈w, v〉 ∈ S, as desired.

Now we consider the case where {x, x′, y′} ∩ ↑v 6= ∅. If {x, x′, y′} ∩ ↑v = {x}, then
〈v, x〉 ∈ S. Moreover, as 〈t, u〉 ∈ S and t 6 v 6 x, we have u 6 x. Thus, by setting w := x,
we are done. A similar argument works if {x, x′, y′} ∩ ↑v is {x, x′} or {y′} (take respectively
w := x′ and w := y′). By (11) it only remains to consider the case where

{x, x′, y′} ∩ ↑v ∈ {{x, y}, {x, x′, y′}}.
But an argument analogous to the one detailed in the last paragraph of the proof of Fact
6.7 shows that this case leads to a contradiction. Hence we conclude the S is a bisimulation
equivalence on A∗.

Consequently, we can assume without loss of generality that S is the identity relation on
A∗. Observe that the subposet of A∗ with universe {⊥, x, x′, y′,>} is isomorphic to one of
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the following rooted posets:
• •
• •
• • • •
• •

Together with (11) and the fact that S is the identity relation, this implies that A∗ is isomorphic
to one of the following rooted posets (in which the elements other than ⊥, x, x′, y′,> are
marked with squares):

• • • •
• • • • • •
• • • • • • • •
• • • •

Z1 Z2 Z3 Z4

For every i = 1, . . . , 4 there is a bisimulation equivalence Ti on Zi such that Z1/T1
∼= Z2/T2 ∼=

C2∗ and Z3/T3 ∼= Z4/T4
∼= C1∗. By Lemma 3.2(iii) this implies {C1, C2} ∩ IS(A) 6= ∅, whence

either C1 or C2 belongs to K. But this contradicts the fact that K omits C1 and C2. Hence we
reached the desired contradiction. �

Lemma 6.10. Let K be a variety of Heyting algebras omitting C1, . . . , C5. Every finite member of K
satisfies the equation β(P3) ≈ 1.

Proof. Suppose, with a view to contradiction, that there is a finite algebra A ∈ K in which the
equation β(P3) ≈ 1 fails. By Theorem 6.1 there is a subframe X of A∗ and a surjective Esakia
morphism from X to the space obtained endowing P3 with the discrete topology. Because of
the definition of an Esakia morphism, this implies that there is a subposet of A∗ isomorphic
to P3. We label the elements of this a copy of P3 inside A∗ as follows:

x1•
x2•
x3• • y

⊥ •

Moreover, by Lemma 3.2(ii) and H(K) ⊆ K, we can assume without loss of generality that ⊥
is the minimum of A∗ and the unique common lower bound of x3 and y.

First observe that for every z ∈ A∗,

{x2, x3, y}∩ ↑z ∈ {∅, {x2}, {x2, x3}, {y}, {x2, y}, {x2, x3, y}}. (12)

This is an immediate consequence of the fact that {x2, x3, y}∩ ↑z is an upset of the subposet
of A∗ with universe {x2, x3, y}.

Now, we shall see that the following relation is a bisimulation equivalence on A∗:

S := {〈u, v〉 ∈ A∗ × A∗ : {x2, x3, y} ∩ ↑u = {x2, x3, y} ∩ ↑v}.
To this end, consider t, u, v ∈ A∗ such that 〈t, u〉 ∈ S, t 6= u, t < v, and 〈t, v〉 /∈ S. As usual,
we need to find an element w > u such that 〈v, w〉 ∈ S.
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First we consider the case where {x2, x3, y} ∩ ↑v = ∅. If t 6 x2, then also u 6 x2 6 x1 (as
〈t, u〉 ∈ S). Consequently, setting w := x1, we are done. Then suppose that t 
 x2. Since
〈t, v〉 /∈ S and {x2, x3, y} ∩ ↑v = ∅, we get {x2, x3, y} ∩ ↑t 6= ∅. This implies that either t 6 x2
or t 6 y. As t 
 x2, we conclude t 6 y. First consider the case where t = y. Then y = t < v.
As 〈t, u〉, we have u 6 y 6 v. Thus, by taking w := v, we are done. We shall see that the case
where t < y never happens. To this end, suppose the contrary, with a view to contradiction.
We shall see that

⊥ < t < y and t is incomparable with x2, x3. (13)
As t 
 x2, clearly t 6= ⊥, whence ⊥ < t. Consequently, ⊥ < t < y. Now, as t 
 x2, we have
t 
 x2, x3. Moreover, since t 6 y and x2, x3 
 y, clearly x2, x3 
 t. Thus t is incomparable
with x2 and x3. This establishes (13). Then {⊥, x2, x3, t, y} is the universe of a subposet
of A∗ isomorphic to P2. Thus A does not satisfies β(P2). But this contradicts Lemma 6.8.
Hence we reached a contradiction, as desired. This concludes the analysis of the case where
{x2, x3, y} ∩ ↑v = ∅.

If {x2, x3, y} ∩ ↑v is equal to {x2}, {x2, x3}, or {y}, then, by taking respectively w := x2,
w := x3 and w := y, we are done. In the light of (12), the only case that remains to be
considered is the one where

{x2, x3, y} ∩ ↑v ∈ {{x2, y}, {x2, x3, y}}.
But an argument analogous to the one detailed in the last paragraph of the proof of Fact
6.7 shows that this case leads to a contradiction. Hence we conclude the S is a bisimulation
equivalence on A∗.

Consequently, we can assume without loss of generality that S is the identity relation on
A∗. Now, either y is a maximal element of A∗ or it is not. If y is a maximal element of A∗,
then the fact that S is the identity relation and condition (12) imply that A∗ is isomorphic to
one of the following rooted posets:

x1• x1•
x2• x2• •y
x3• •y x3• •
⊥• ⊥•

In both cases, C1 ∈ IS(A) ⊆ K by Lemma 3.2(iii). But this contradicts the assumption that K
omits C1.

We conclude that y is not a maximal element of A∗. Together with the fact that S is the
identity relation and condition (12), this implies that A∗ is isomorphic to one of the following
rooted posets:

x1• x1•
x2• x2• •y
x3• •y x3• •
⊥• ⊥•

In both cases, C2 ∈ IS(A) ⊆ K by Lemma 3.2(iii). But this contradicts the assumption that K
omits C2. Hence we reached a contradiction, as desired. �

Corollary 6.11. Let K be a variety of Heyting algebras omitting C1, . . . , C5. The finite members of K
belong to KG.
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Proof. Apply Theorem 6.3 to Lemmas 6.4, 6.8, and 6.10. �

We rely on the following observation, which specializes5 [10, Cor. 4.3.10]:

Lemma 6.12. If A ∈ KG is a nontrivial finite FSI algebra, then A = B1 + · · ·+ Bn for some Heyting
algebras B1, . . . , Bn ∈ H(RN) such that B1 is the two-element Boolean algebra.

Let 2 and 4 be the, respectively, the two and the four-element Boolean algebras. Moreover,
let D be the Heyting algebra depicted below:

•
• •
• •

• •
•

The next result describes the structure of varieties of Heyting algebras omitting C1, . . . , C5:

Theorem 6.13. Let K be a variety of Heyting algebras omitting C1, . . . , C5. Then
(i) K is a locally finite subvariety of KG.

(ii) Every nontrivial finite FSI member of K has the form B1 + · · ·+ Bn for some Heyting algebras
Bi such that B1

∼= 2, and if n > 1, then Bn ∈ I{2, 4, D} and Bj ∈ I{2, 4} for all 1 < j < n.
Moreover, the above conditions hold for every primitive variety K of Heyting algebras.

Proof. (ii): Let A be a finite nontrivial FSI member of K. By Corollary 6.11 and Lemma 6.12
we obtain that A = B1 + · · ·+ Bn for some finite nontrivial B1, . . . , Bn ∈ H(RN) such that
B1 = 2. We may assume without loss of generality that no Bi can be written as a sum with at
least two nontrivial components.

Suppose with a view to contradiction that n > 1 and Bn /∈ I{2, 4, D}. Then observe

2 + Bn ∈ S(2 + B2 + · · ·+ Bn) = S(B1 + · · ·+ Bn) = S(A) ⊆ K.

Now, recall that Bn is a finite nontrivial member of H(RN). To visualize Bn, it is convenient
to observe that the order-type of finite homomorphic images of RN is that of principal
nontotal downsets of RN. Since Bn cannot be written as a sum with at least two nontrivial
components, this implies that the order type of Bn is that of ↓RN a for some a ∈ RN r {0}
that a is not prime.

If ↓RN a has at least 8 elements, the assumption that a is not prime guarantees that C1 ∈
H(Bn), whence C1 ∈ H(Bn) ⊆ H(2 + Bn) ⊆ K, a contradiction. Then we consider the case
where ↓RN a has less than 8 elements. Since a is not prime and Bn is nontrivial, this implies
that Bn ∈ I{2, 4, D}, which is also a contradiction. Hence, we conclude that if n > 1, then
Bn ∈ I{2, 4, D}.

Next consider 1 < j < n and suppose, with a view to contradiction, that Bj /∈ I{2, 4}. As
1 < j < n, this yields

2 + Bj + 2 ∈ S(2 + B2 + · · ·+ Bn) = S(B1 + · · ·+ Bn) = S(A) ⊆ K.

As above, the order type of Bj is that of ↓RN a for some a ∈ RN r {0} that is not prime.
Together with the fact that Bj is nonisomorphic to 2, 4 and inspecting the structure of RN, this

5We point out that this proof is via Esakia duality.
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yields C2 ∈ S(2 + Bj + 2), whence C2 ∈ K that is false. Hence we conclude that if 1 < j < n,
then Bj ∈ I{2, 4}.

(i): Using the layer-structure given by condition (ii) and the fact that an n-generated
Heyting algebra cannot be a sum of more than 2n + 1 nontrivial algebras, it is not hard to see
that for every n ∈ ω there are, up to isomorphism, only finitely many n-generated finite FSI
algebras in K. By Theorem 4.3 we conclude that K is locally finite.

Now, Corollary 6.11 guarantees that the finite members of K belong to KG. As K is locally
finite and, therefore, generated by its finite members, this implies that K ⊆ KG.

Finally, the fact that conditions (i) and (ii) hold for all primitive varieties of Heyting
algebras is a consequence of Lemma 5.1. �

Remark 6.14. Theorem 6.13(i) is also a consequence of Corollary 6.11 and a general criteria of
local finiteness in subarieties of KG [10, Thm. 4.6.5] stating that a subvariety of KG is locally
finite if and only if it omits RN + 2. In order to keep the paper self contained, we provided a
full proof.

7. PRIMITIVE VARIETIES OF HEYTING ALGEBRAS

For the present purpose, it is convenient to describe Esakia spaces dual to sums of Heyting
algebras. Let X = 〈X;6X〉 and Y = 〈Y;6Y〉 be two posets (with disjoint universes). Their
sum X + Y is the poset with universe X ∪Y and whose order relation 6 is defined as follows
for every x, y ∈ X ∪Y:

x 6 y⇐⇒ either (x, y ∈ X and x 6X y) or (x, y ∈ Y and x 6Y y)

or (x ∈ X and y ∈ Y).

So, X + Y is the poset obtained by placing Y above X.
Now, let X and Y be two Esakia spaces (with disjoint universes). The sum X + Y is the

Esakia space, whose underlying poset is 〈X;6X〉 + 〈Y;6Y〉, endowed with the topology
consisting of the sets U ⊆ X ∪Y such that U ∩ X and U ∩Y are open respectively in X and
Y . The following result is [10, Thm. 4.1.16] and [56, Lem. 5.1].

Lemma 7.1. If A and B are Heyting algebras, then the Esakia spaces (A + B)∗ and A∗ + B∗ are
isomorphic.

Moreover, we shall recall a basic concept from universal algebra. Let K be a variety. A
nontrivial algebra A ∈ K is said to be a splitting algebra in K [52, 68] if there exists the
largest subvariety V of K omitting A. In this case, V is always axiomatized relative to
K by a single equation, sometimes called the splitting equation. In the realm of Heyting
algebras, this phenomenon was first discovered by Jankov [43]6, who associated a special
formula χ(A)—now known as the Jankov formula—with every finite nontrivial FSI (equiv.
finite subdirectly irreducible) Heyting algebra A, validating the following result:

Theorem 7.2. Let A and B be Heyting algebras such that A is finite, nontrivial, and FSI.

B � χ(A) ≈ 1⇐⇒ A /∈ SH(B).

Moreover, χ(A) ≈ 1 axiomatizes the largest variety of Heyting algebras omitting A.

6His approach was subsequently generalized to arbitrary varieties with EDPC in [13, Cor. 3.2] (see also [25,
Cor. 3.8] for a similar result).
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Bearing this in mind, let Citk be the largest variety of Heyting algebras omitting C1, . . . , C5,
i.e., the variety of Heyting algebras axiomatized by the equations

χ(Ci) ≈ 1, for all i = 1, . . . , 5.

Citikin’s Theorem [19] can be phrased in purely algebraic terms as follows:

Theorem 7.3. The following conditions are equivalent for a variety K of Heyting algebras:
(i) K is primitive;

(ii) K is a subvariety of Citk;
(iii) K omits the algebras C1, . . . , C5;
(iv) Every nontrivial finite FSI member of K has the form B1 + · · ·+ Bn for some Heyting algebras

Bi such that B1
∼= 2, and Bj ∈ I{2, 4} for all 1 < j < n, and, if n > 1, then Bn ∈ I{2, 4, D}.

Consequently, Citk is the largest primitive variety of Heyting algebras.

Proof. Parts (i)⇒(iii) and (iii)⇒(iv) follow, respectively, from Lemma 5.1 and Theorem 6.13.
Moreover, conditions (ii) and (iii) are equivalent by definition of Citk.

(iv)⇒(i): Observe that the Esakia spaces dual to the algebras 2, 4, and D are respectively
the following posets endowed with the discrete topology:

2∗ 4∗ D∗• •
• • • • •

We will rely on the following observations.

Claim 7.4. Let X be a finite Esakia space such that X∗ ∈ K. Then for every x ∈ X there are a
positive integer n and Esakia spaces X1, . . . , Xn such that ↑x is isomorphic to X1 + · · ·+ Xn,
where X1 = 2∗, Xj ∈ {2∗, 4∗} for all 1 < j < n, and, if n > 1, then Xn ∈ {2∗, 4∗, D∗}.

Proof of the Claim. In view of Lemma 3.2(i, ii), the Heyting algebra dual to ↑x is an FSI member
of K. Together with the assumption (i.e., condition (iv) of Theorem 7.3) and Lemma 7.1, this
yields the desired conclusion. �

Claim 7.5. Let X be a finite Esakia space such that X∗ ∈ K and x ∈ X. If Xr ↑x 6= ∅, then
there exists a surjective noninjective Esakia morphism f : X → Y that restricts to an order
isomorphism from ↑x to an upset U of Y .

Proof of the Claim. In view of Claim 7.4, there are a positive integer n and Esakia spaces
X1, . . . , Xn such that ↑x is isomorphic to X1 + · · ·+ Xn, where X1 = 2∗, Xj ∈ {2∗, 4∗} for
all 1 < j < n, and, if n > 1, then Xn ∈ {2∗, 4∗, D∗}. Let us label the elements of ↑x (equiv.
of X1 + · · ·+ Xn). Consider one of the Xi’s. If Xi = 2∗ (resp. Xi = 4∗), then we denote the
unique element (resp. the two elements) of Xi by ai (resp. ai and bi). Then suppose that
Xi = D∗. In this case, we have necessarily i = n and we denote the elements of Xi as follows:

an • • bn

c • • d
Since, by assumption, Xr ↑x is finite and nonempty, it has a maximal element y. Let then

m(y) be the set of minimal elements in ↑x ∩ ↑y. The maximality of y in Xr ↑x guarantees
that m(y) is the set of immediate successors of y.

If m(y) = ∅, then y is a maximal element of X. Then consider a maximal element z ∈ ↑x.
Since y /∈ ↑x, we have that y and z are two distinct maximal elements of X. Consequently,
we can identify them through a β-reduction, thus producing the desired Esakia morphism.
On the other hand, if m(y) is a singleton, say {z}, then z is the unique immediate successor
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of y. Consequently, we can identity y and z with an α-reduction, thus producing the desired
Esakia morphism.

Therefore, it only remains to consider the case where m(y) has at least two elements. We
will prove that

m(y) is either {c, d} or {ai, bi} for some i 6 n. (14)

By assumption, m(y) has at least two distinct elements z and v. Suppose, with a view to
contradiction, that m(y) 6= {z, v}. Then there is an element w ∈ m(y)r {z, v}. As z, v, and w
are minimal in ↑x ∩ ↑y, they must be incomparable in ↑x. But this contradicts the fact that
↑x is a rooted poset of width 6 2. Hence we conclude that m(y) = {z, v}. Bearing in mind
that ↑x = X1 + · · ·+ Xn and that z and v are incomparable, this easily implies that m(y) is
one of the sets {c, d}, {bn, c}, and {ai, bi} for some i 6 n. Therefore, to conclude the proof of
condition (14), it only remains to show that m(y) cannot be {bn, c}.

Suppose the contrary, with a view to contradiction. Therefore, Xn = D∗ and ↑y contains
an, bn, and c. By applying Claim 7.4 to ↑y, we obtain that ↑y ∼= Y1 + · · ·+ Ym, where Y1 = 2∗,
Yj ∈ {2∗, 4∗} for all 1 < j < m, and, if m > 1, then Ym ∈ {2∗, 4∗, D∗}. Together with the
fact that ↑y contains two distinct comparable elements, namely, c and an, both of which are
incomparable with an element bn > y, this implies that Ym = D∗. Furthermore, as an and bn
are maximal, they must be the maximal elements of Ym. Bearing in mind that Ym = D∗, this
guarantees the existence of an element z ∈ Ym such that z 6 an, bn and z 
 c. Since y 6 z
and y is maximal in Xr ↑x, we obtain that either y = z or z ∈ ↑x. Now, from c ∈ m(y) it
follows that y 6 c. Together with z 
 c, this implies that y 6= z and, therefore, that z ∈ ↑x. As
m(y) = {bn, c} is the set of minimal elements of ↑x ∩ ↑y, this guarantees that bn 6 z or c 6 z.
But, since z 6 an, bn, this would yield that either bn 6 an or c 6 bn, a contradiction. Hence,
we conclude that condition (14) holds.

In view of condition (14), we have two cases: either m(y) = {c, d} or m(y) = {ai, bi} for
some i 6 n. Then consider the following element of ↑x:

z :=

 an−1 if m(y) = {c, d}
ai−1 if m(y) = {ai, bi} and either i < n or Xn 6= D∗
d if m(y) = {an, bn} and Xn = D∗.

It is easy to see that the set of immediate successors of z is precisely m(y). Since m(y) is
also the set of immediate successors of y, we can identify y and z with a β-reduction, thus
obtaining the desired Esakia morphism. �

With a series of applications of Claim 7.5, we obtain the following:

Claim 7.6. Let X be a finite Esakia space such that X∗ ∈ K and x ∈ X. Then there exists a
surjective Esakia morphism f : X → ↑x, whose restriction to ↑x is the identity function.

Now, we turn to the proof of the main statement. The proof of Theorem 6.13(ii) shows that
K is locally finite. Hence to establish that K is primitive it suffices, by Theorem 2.2, to show
that the finite nontrivial FSI members of K are weakly projective in K.

Consider a finite nontrivial FSI algebra A ∈ K. Let also E ∈ K be such that A ∈ H(E).
Clearly, there is a surjective homomorphism f : E → A. Since A is finite, there is a finitely
generated subalgebra B 6 E such that A ∈ H(B). Therefore, to conclude that A is weakly
projective in K, it will be enough to show that A ∈ IS(B) and, therefore, A ∈ IS(E). Instead
of proving directly that A ∈ IS(B), we will establish the existence of a surjective Esakia
morphism g : B∗ → A∗ (see Lemma 3.2(iii)).
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To this end, observe that B is finite, since K is locally finite and B is finitely generated.
Thus the Esakia space B∗ is also finite and such that (B∗)∗ ∈ K. Furthermore, in view of
Lemma 3.2(ii) and A ∈ H(B), we can identify A∗ with a principal upset of B∗. Therefore,
we can apply Claim 7.6 obtaining that there is a surjective Esakia morphism g : B∗ → A∗, as
desired. �

Remark 7.7. The proof of the implication (iv)⇒(i) in Theorem 7.3 shows that A is projective
in the classical sense in K. This is because Claim 7.6 guarantees that the restriction of g to
A∗ is the identity map. As a consequence, the embedding g∗ : A → B can be viewed as an
embedding g∗ : A→ E such that f ◦ g∗ is the identity map on A and, therefore, A is a retract
of E. It follows that the nontrivial finite FSI members of a primitive variety K of Heyting
algebras are projective in K. �

Letting Citk be the intermediate logic axiomatized by the formulas χ(C1), . . . , χ(C5), we
obtain the classical formulation of Citkin’s Theorem:

Corollary 7.8. An intermediate logic is hereditarily structurally complete if and only if it extends
Citk. Consequently, Citk is the least hereditarily structurally complete intermediate logic.

Proof. As explained in Section 2, an intermediate logic is hereditarily structurally complete if
and only if the variety of Heyting algebras naturally associated with it is primitive. Thus the
result follows from Theorem 7.3. �

8. PRIMITIVE VARIETIES OF BROUWERIAN ALGEBRAS

It is well known that the 〈∧,∨,→〉-fragment of IPC, here denoted by IPC+, is algebraized
by the variety of Brouwerian algebras, i.e., 〈∧,∨,→〉-subreducts of Heyting algebras. As a
consequence of the algebraization phenomenon, the lattice of varieties of Brouwerian algebras
is dually isomorphic to that of positive logics, i.e., axiomatic extensions of IPC+. Moreover, a
positive logic is hereditarily structurally complete if and only if the variety of Brouwerian
algebras associated with it is primitive.

As structural completeness and its variants are very sensitive to (even small) changes of
signature, it was natural to wonder whether Citkin’s description of hereditarily structurally
complete intermediate logics could be extended to positive logics. Recently, a positive
solution to this question was supplied by Citkin himself in [22]. However, as we will show
below, the results and techniques of the previous sections of this paper yield a very short
alternative proof of this result.

Given a Brouwerian algebra A, we denote by A⊥ the unique Heyting algebra obtained
by adding a new bottom element ⊥ to A. As the characterization of FSI algebras given in
Lemma 3.2(i) holds for Brouwerian algebras as well, A is FSI if and only if so is A⊥. Given a
class of Brouwerian algebras K, define

K⊥ := {A⊥ : A ∈ K}.
Observe that for every class K of Brouwerian algebras,

H(K⊥) = H(K)⊥ and S(K⊥) = S(K)⊥ (15)

where the class operators H and S are computed in the language of Heyting algebras for
H(K⊥) and S(K⊥), and in the language of Brouwerian algebras for H(K) and S(K). Finally,
given a Heyting algebra A, we denote by A+ its 〈∧,∨,→〉-reduct.

Lemma 8.1. Let K be a variety of Brouwerian algebras. If K omits C+
1 and C+

3 , then V(K⊥) omits
C1, . . . , C5.
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Proof. Suppose the contrary, with a view to contradiction. Then there is i = 1, . . . , 5 such that
Ci ∈ V(K⊥). By Theorem 7.2 the variety V(K⊥) does not validate χ(Ci) ≈ 1. Thus there is
A ∈ K such that A⊥ rejects χ(Ci) ≈ 1. By Theorem 7.2 and (15) this implies

Ci ∈ SH(A⊥) = (SH(A))⊥.

As a consequence, Ci has the form B⊥ for some Brouwerian algebra B such that

B ∈ SH(A). (16)

As Ci = B⊥, the bottom element of Ci is meet-irreducible. By inspecting C1, . . . , C5, this
guarantees that Ci ∈ {C2, C4}. Together with B⊥ = Ci, this implies B ∈ {C+

1 , C+
3 }. By (16)

we conclude that
either C+

1 ∈ SH(A) ⊆ K or C+
3 ∈ SH(A) ⊆ K.

But this contradicts the fact that K omits C+
1 and C+

3 . �

As shown by Jankov [43], Theorem 7.2 generalizes to the case of Brouwerian algebras.
More precisely, every finite nontrivial FSI (equiv. finite subdirectly irreducible) Brouwerian
algebra A can be associated with a formula χ(A)+ such that the largest variety of Brouwerian
algebras omitting A exists and is axiomatized by χ(A)+ ≈ 1. Bearing this in mind, let
Citk+ be the largest variety of Brouwerian algebras omitting C+

1 and C+
3 , i.e., the variety of

Brouwerian algebras axiomatized by the equations

χ(C+
1 )+ ≈ 1 and χ(C+

3 )+ ≈ 1.

Citkin’s description of hereditarily structurally complete positive logics can be phrased
algebraically as follows:

Theorem 8.2. The following conditions are equivalent for a variety K of Brouwerian algebras:
(i) K is primitive;

(ii) K is a subvariety of Citk+;
(iii) K omits the algebras C+

1 and C+
3 ;

(iv) Every nontrivial finite FSI member of K has the form B1 + · · · + Bn for some Brouwerian
algebras Bi such that B1

∼= 2+, and Bj ∈ I{2+, 4+} for all j > 1.
Consequently, Citk+ is the largest primitive variety of Brouwerian algebras.

Proof. Observe that conditions (ii) and (iii) are equivalent by definition of Citk+. Moreover,
the proof of (i)⇒(iii) is analogous to that of Lemma 5.1.

(iii)⇒(iv): Let A be a nontrivial finite FSI member of K. Then A⊥ is a finite nontrivial FSI
member of V(K⊥). From Lemma 8.1 and Theorem 7.3 it follows that A⊥ = B1 + · · ·+ Bn
for some Heyting algebras Bi such that B1

∼= 2, and Bj ∈ I{2, 4} for all 1 < j < n, and, if
n > 1, then Bn ∈ I{2, 4, D}. By construction of A⊥, its bottom element is meet-irreducible.
Consequently, necessarily Bn ∼= 2. Also, as A is nontrivial, A⊥ has at least three elements,
whence n > 1. Thus

A⊥ ∼= 2 + B2 + · · ·+ Bn−1 + 2.
As a consequence,

A⊥ ∼= 2+ + B+
2 + · · ·+ B+

n−1

where each B+
i is isomorphic either to 2+ or to 4+.

(iv)⇒(i): First observe that K omits C+
1 and C+

3 . Therefore, Lemma 8.1 and Theorem 6.13(i)
imply that V(K⊥) is locally finite. This, in turn, guarantees that K is also locally finite. By
Theorem 2.2 we conclude that, in order to prove that K is primitive, it suffices to show that its
finite nontrivial FSI members are weakly projective in K.
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Accordingly, consider a finite nontrivial FSI member A of K. Then let B ∈ K and f : B→ A
be a surjective homomorphism. Observe that the unique map f⊥ : B⊥ → A⊥ which extends
f by f⊥(⊥) := ⊥ is a homomorphism of Heyting algebras. By assumption, A is a finite linear
sum of copies of 2 and 4, whence the same holds for A⊥. By [1, Thm. 4.10] this implies that
A is projective in the standard sense. Therefore, as f⊥ is surjective, there is an embedding
g : A⊥ → B⊥. Observe that g restricts to an embedding g : A → B of Brouwerian algebras.
Consequently, A ∈ IS(B). Hence we conclude that A is weakly projective in K. �

Letting Citk+ be the positive logic axiomatized by χ(C+
1 ) and χ(C+

3 ), we get:

Corollary 8.3. A positive logic is hereditarily structurally complete if and only if it extends Citk+.
Consequently, Citk+ is the least hereditarily structurally complete positive logic.

9. PROPERTIES OF PRIMITIVE VARIETIES

Primitive varieties of Heyting and Brouwerian algebras have a number of interesting
properties, as we proceed to explain. Recall that a variety is said to be finitely based if it can be
axiomatized by finitely many equations.

Theorem 9.1. The following conditions hold:
(i) Primitive varieties of Heyting (resp. Brouwerian) algebras are locally finite.

(ii) Primitive varieties of Heyting (resp. Brouwerian) algebras are finitely based.
(iii) There are only countably many primitive varieties of Heyting (resp. Brouwerian) algebras.

We conclude the paper by sketching a proof of the above result.7

Proof sketch. We consider the case of Heyting algebras only, as that of Brouwerian algebras
is analogous. First observe that primitive varieties of Heyting algebras are locally finite by
Theorem 7.3 and the last part of Theorem 6.13. This establishes condition (i). Moreover,
condition (iii) is an immediate consequence of (ii). Thus, to conclude the proof, it suffices to
establish (ii).

We shall provide a proof sketch only. To this end, recall from Theorem 7.3 that Citk is
the largest primitive variety of Heyting algebras. Therefore, to conclude the proof, it only
remains to show that all subvarieties of Citk are finitely based. Observe that Citk is finitely
based by definition. Moreover, it is locally finite by condition (i). Thus, by general arguments
related to Jankov formulas, e.g., [10, Thm. 3.4.14] and [17, Ch. 9], one can reduce the problem
of proving that all subvarieties of Citk are finitely based to that of showing that the poset
Ord(Citk) of finite nontrivial FSI members of Citk ordered under the relation

A 4 B⇐⇒ A ∈ HS(B)

has no infinite antichain. Recall from Theorem 2.2 that all nontrivial FSI members of Citk are
weakly projective in Citk. As a consequence for every A, B ∈ Ord(Citk),

A 4 B⇐⇒ A ∈ HS(B)⇐⇒ A ∈ S(B). (17)

Thus, to conclude the proof, it suffices to show that there is no infinite antichain in the poset
of finite nontrivial FSI members of Citk ordered under the relation

A 4 B⇐⇒ A ∈ S(B).

7The reason why in this case we opted for providing a proof sketch only is that, for the case of Brouwerian
algebras, a detailed proof of Theorem 9.1 is given in [22] and there is no reason for repeating it here. Moreover,
the version of Theorem 9.1 for Heyting algebras is proved by a simple modification of the Brouwerian case.
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This can be shown by a combinatorial argument similar to the one detailed in [22, Sec. 7] for
the case of Brouwerian algebras, using the description of finite nontrivial FSI members of
Citk given in Theorem 7.3. �

Thus we arrive at the following corollary.

Corollary 9.2. Hereditarily structurally complete intermediate logics (resp. positive logics) are locally
tabular and finitely axiomatizable. Moreover, there are only countably many such logics.
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