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Intuitionistic logic IPC is complete with respect to
I Intuitionistic Kripke frames, i.e., posets X = 〈X,6〉; and
I Heyting algebras, i.e., structures A = 〈A;∧,∨,→, 0, 1〉 that

comprise a bounded lattice 〈A;∧,∨, 0, 1〉 and satisfy

a ∧ b 6 c⇐⇒ a 6 b→ c, for every a, b, c ∈ A.

1965–1974: Kripke and Esakia connected the two as follows:
I With every Heyting algebra A we associate the poset A∗ of

meet irreducible (a.k.a. prime) filters of A.
I With every poset X we associate a Heyting algebra

Up(X) := 〈Up(X);∩,∪,→, ∅, X〉
whose universe is the set of upsets of X and → is defied as

U → V := {x ∈ X : for every y > x, if y ∈ U, then y ∈ V}.

In addition, every Heyting algebra A embeds into Up(A∗) via the
map defined by the rule

a 7−→ {F ∈ A∗ : a ∈ F}.



Given a formula ϕ, two natural questions arise:
I Canonicity: Is it true that for every Heyting algebra A,

if A � ϕ, then Up(A∗) � ϕ?
I Correspondence: Is there a sentence tr(ϕ) in the language of

posets such that for every poset X,

Up(X) � ϕ⇐⇒ X � tr(ϕ)?

This holds true for the following formulas:

Definition
A modal formula is
I a Sahlqvist antecedent (SA) if it is constructed from atoms,

negative formulas, and 0 and 1 using only ∧ and ∨;
I a Sahlqvist implication (SI) if it is positive, or of the form ¬ϕ

for a SA ϕ, or of the form ϕ→ ψ for a SA ϕ and a positive ψ;
I Sahlqvist if it is constructed from SI using only ∧ and ∨.

I Example. x ∨ ¬x and (x → y) ∨ (y→ x) are Sahlqvist,
whence CPC and LC are axiomatized by Sahlqvist formulas.



Definition
A Sahlqvist quasiequation is an expression of the form

Φ = ϕ1 ∧ y 6 z & . . . & ϕn ∧ y 6 z =⇒ y 6 z,

where ϕ1, . . . , ϕn are Sahlqvist formulas.

Sahlqvist Theorem for IPC
The following holds for every Sahlqvist quasiequation Φ:
I Canonicity: For every Heyting algebra A,

if A � Φ, then Up(A∗) � Φ;

I Correspondence: There exists an effectively computable
sentence tr(Φ) such that for every poset X:

Up(X) � Φ⇐⇒ X � tr(Φ).

Example. The meaning of tr(x ∨ ¬x) is “X is discrete” and that of
tr((x → y) ∨ (y→ x)) is “X is a root system”.



Aim: To extend Sahlqvist canonicity to fragments of IPC with ∧.
I The case of pseudocomplemented semilattices (PSL):

Let A ∈ PSL and

Φ = ϕ1 ∧ y 6 z & . . . & ϕn ∧ y 6 z =⇒ y 6 z

a Sahlqvist quasiequation in ∧,¬, 0 only valid in A.
I There’s an embedding f : A→ B for a HA B s.t. Up(B∗) � Φ.
I The partial map f∗ : B∗ ; A∗ with

dom( f∗) := {F ∈ B∗ : f−1[F] ∈ A∗}
defined by the rule F 7−→ f−1[F] is a surjective

partial negative p-morphism,

i.e., order preserving and s.t. for all F ∈ dom( f∗) and G ∈ A∗,

f∗(F) ⊆ G =⇒ ∃H ∈ dom( f∗) s.t. F ⊆ H and G ⊆ f∗(H).

I By duality, the map ( f∗)∗ : Up(A∗)→ Up(B∗), defined by

U 7−→ B∗ r ↓ f∗[A∗ rU],

is an embedding of pseudocomplemented semilattices.
I Since Up(B∗) validates Φ, we conclude that so does Up(A∗).



Sahlqvist Canonicity for fragments of IPC with ∧
Let Φ be a Sahlqvist quasiequation in the language of a fragment L
of IPC comprising ∧. For every L-subreduct A of a Heyting algebra,

if A � Φ, then Up(A∗) � Φ.

I The excluded middle x ∨ ¬x can be rendered as

Ψ = x ∧ y 6 z &¬x ∧ y 6 z =⇒ y 6 z

which is canonical in PSL. Furthermore, for every poset X,

Up(X) � Ψ⇐⇒ the order of X is the identity.

I The bounded top width n formula btwn can be rendered as

Φn = &
16i6n+1

(
¬(¬xi ∧

∧
0<j<i

xj) ∧ y 6 z
)
=⇒ y 6 z,

which is canonical in PSLs and for every poset X,

Up(X) � Φn ⇐⇒ in principal upsets in X, every (n + 1)-element
antichain is below an n-element one.

Remark. The formula btwn cannot be rendered as an equation!



The intuitionistic Sahlqvist theory can be extended to any logic.
I A logic ` is a substitution invariant finitary consequence

relation on the set of formulas of some algebraic language.
I Given an algebra A, let Fi`(A) be the lattice of deductive

filters of ` on A, i.e., subsets of A closed under the rules of `.
I The lattice Fi`(A) is algebraic with semilattice of compact

elements Fiω` (A).
I A logic ` is protoalgebraic if there exists a set of formulas

∆(x, y) such that ∅ ` ∆(x, x) and x, ∆(x, y) ` y.
Most logics with a very weak implication are protoalgebraic as
witnessed by the set ∆ = {x → y}.



A logic ` is said to have:
I the inconsistency lemma (IL) when for every n ∈ Z+ there

exists a finite set ∼n(x1, . . . , xn) of formulas s.t.

Γ ∪ {ϕ1, . . . , ϕn} is inconsistent iff Γ `∼n(ϕ1, . . . , ϕn);

I the deduction theorem (DT) when there exists a finite set
x⇒ y of formulas s.t.

Γ, ϕ ` ψ iff Γ ` ϕ⇒ ψ;

I the proof by cases (PC) when there exists a finite set x
b

y of
formulas s.t.

Γ, ϕ ` γ and Γ, ψ ` γ iff Γ, ϕ
j

ψ ` γ.

The structure of the semilattices Fiω` (A) determines the validity of
these properties in a logic `.

Theorem (Blok & Pigozzi, Czelakowski & Dziobiak, Raftery)
A protoalgebraic logic ` has the IL (resp. DT, PC) iff the
semilattice Fiω` (A) is pseudocomplemented (resp. implicative
semilattice, distributive lattice) for every algebra A.



A formula ϕ(x1, . . . , xn) of IPC is compatible with a logic ` when
I If ¬ occurs in ϕ, then ` has the IL;
I If → occurs in ϕ, then ` has the DT;
I If ∨ occurs in ϕ, then ` has the PC.

In this case, for every k ∈ Z+ we define a finite set

ϕk(x1
1, . . . , xk

1, . . . , x1
n, . . . , xk

n)

of formulas of ` as follows:
I If ϕ = xi, then ϕk := {x1

i , . . . , xk
i };

I If ϕ = ψ1 ∧ ψ2, then ϕk := ψk
1 ∪ψk

2;
I If ϕ = ¬ψ and ψk = {χ1, . . . , χm}, then

ϕk := ∼m(χ1, . . . , χm),

where ∼m (z1, . . . , zm) is the set witnessing the IL for `;
I Similarly, for ∨ and →.



The spectrum of an algebra A relative to a logic ` is the poset
Spec`(A) of the meet irreducible deductive filters of ` on A.

General Sahlqvist Theorem
TFEA for a Sahlqvist quasiequation

Φ = ϕ1 ∧ y 6 z & . . . & ϕm ∧ y 6 z =⇒ y 6 z

compatible with a protoalgebraic logic `:
I The logic ` validates the metarules

Γ,ϕk
1(~γ1, . . . ,~γn)� ψ . . . Γ,ϕk

m(~γ1, . . . ,~γn)� ψ

Γ � ψ

for all k ∈ Z+ and finite sets of formulas Γ ∪ {ψ, ~γ1, . . . ,~γn};
I For every algebra A, we have Spec`(A) � tr(Φ).



Proof by example. Suppose that the Sahlqvist quasiequation

Φ = x ∧ y 6 z &¬x ∧ y 6 z =⇒ y 6 z.

corresponding to the excluded middle x ∨ ¬x is compatible with `.
Remark. The semilattice Fiω` (A) is pseudocomplemented, for all A.
I Suppose that ` validates the metarules

Γ, γ1, . . . , γn � ψ Γ,∼n (γ1, . . . , γn)� ψ

Γ � ψ.

I Then Fiω` (Fm) validates Φ.
I By protoalgebraicity, Fiω` (A) validates Φ, for every A.
I By Canonicity, Up(Fiω` (A)∗) � Φ.
I As Fi`(A) is an algebraic lattice,

Fi`(A) ∼= the lattice of filters of the semilattice Fiω` (A).

I Consequently, Spec`(A) ∼= Fiω` (A)∗.
I Thus, Up(Spec`(A)) � Φ.
I By Correspondence, Spec`(A) � tr(Φ).



Examples. Let ` be a protoalgebraic logic with the IL.

Corollary (Lávička & Přenosil)

The logic ` validates the following metarules for n ∈ Z+:

Γ, γ1, . . . , γn � ψ Γ,∼n (γ1, . . . , γn)� ψ

Γ � ψ

iff it is semisimple: the poset Spec`(A) is discrete, for every A.

Corollary (for n = 1, Lávička, M., Raftery)

The logic ` validates the following metarules for n ∈ Z+:

Γ,∼ (~γ1 ∪ · · · ∪ ~γi−1∪ ∼~γi)� ψ for every 1 6 i 6 n + 1
Γ � ψ

iff it has bounded top width n: the principal upsets in Spec`(A)
have at most n maximal elements, for every A.



A concrete example.
I For every Γ = {γ1, . . . , γn} and ϕ, we write

Γ → ϕ := (γ1 → (γ2 → (. . . (γn−1 → γn) . . . )))→ ϕ

I Then for every Sahlqvist quasiequation

Φ = ϕ1 ∧ y 6 z & . . . & ϕn ∧ y 6 z =⇒ y 6 z

compatible with a logic `, we define a set of formulas

Φ∗ :=
⋃

k∈Z+

((ϕk
1 → x) ∪ · · · ∪ (ϕk

n → x))→ x.

Salhqvist Canonicity for fragments of IPC with →
Let L be a fragment of IPC comprising →. For every L-subreduct A
of a Heyting algebra,

if A � Φ∗, then Up(SpecL(A)) � Φ∗,

where SpecL(A) is the poset of meet irr. implicative filters of A.



Thank you very much for your attention!


