Sahlqvist theory for deductive systems

Tommaso Moraschini

Department of Philosophy, University of Barcelona

AMS Spring Western Virtual Sectional Meeting 2022

Joint work with Damiano Fornasiere

Intuitionistic logic IPC is complete with respect to

- ▶ Intuitionistic Kripke frames, i.e., posets $X = \langle X, \leqslant \rangle$; and
- ► Heyting algebras, i.e., structures A = ⟨A; ∧, ∨, →, 0, 1⟩ that comprise a bounded lattice ⟨A; ∧, ∨, 0, 1⟩ and satisfy

$$a \wedge b \leqslant c \iff a \leqslant b \rightarrow c$$
, for every $a, b, c \in A$.

1965–1974: Kripke and Esakia connected the two as follows:

- With every Heyting algebra A we associate the poset A_{*} of meet irreducible (a.k.a. prime) filters of A.
- With every poset X we associate a Heyting algebra

 $\mathsf{Up}(\mathsf{X}) \coloneqq \langle \mathsf{Up}(\mathsf{X}); \cap, \cup, \rightarrow, \emptyset, X \rangle$

whose universe is the set of upsets of X and \rightarrow is defied as

 $U \to V \coloneqq \{x \in X : \text{for every } y \ge x, \text{ if } y \in U, \text{ then } y \in V\}.$

In addition, every Heyting algebra A embeds into $\mathsf{Up}(A_*)$ via the map defined by the rule

$$a\longmapsto \{F\in A_*:a\in F\}.$$

Given a formula φ , two natural questions arise:

• Canonicity: Is it true that for every Heyting algebra A,

if $A \vDash \varphi$, then $\mathsf{Up}(A_*) \vDash \varphi$?

Correspondence: Is there a sentence tr(φ) in the language of posets such that for every poset X,

$$\mathsf{Up}(\mathbb{X})\vDash\varphi\Longleftrightarrow\mathbb{X}\vDash\mathsf{tr}(\varphi)?$$

This holds true for the following formulas:

Definition

- A modal formula is
 - ► a Sahlqvist antecedent (SA) if it is constructed from atoms, negative formulas, and 0 and 1 using only ∧ and ∨;
 - A Sahlqvist implication (SI) if it is positive, or of the form ¬φ for a SA φ, or of the form φ → ψ for a SA φ and a positive ψ;
 - Sahlqvist if it is constructed from SI using only \land and \lor .

Definition

A Sahlqvist quasiequation is an expression of the form

$$\Phi = \varphi_1 \wedge y \leqslant z \& \dots \& \varphi_n \wedge y \leqslant z \Longrightarrow y \leqslant z,$$

where $\varphi_1, \ldots, \varphi_n$ are Sahlqvist formulas.

Sahlqvist Theorem for IPC

The following holds for every Sahlqvist quasiequation Φ :

Canonicity: For every Heyting algebra A,

if $A \vDash \Phi$, then $Up(A_*) \vDash \Phi$;

Correspondence: There exists an effectively computable sentence tr(Φ) such that for every poset X:

 $\mathsf{Up}(\mathbb{X}) \vDash \Phi \Longleftrightarrow \mathbb{X} \vDash \mathsf{tr}(\Phi).$

Example. The meaning of $tr(x \lor \neg x)$ is "X is discrete" and that of $tr((x \to y) \lor (y \to x))$ is "X is a root system".

Aim: To extend Sahlqvist canonicity to fragments of IPC with $\wedge.$

• The case of pseudocomplemented semilattices (PSL): Let $A \in PSL$ and

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

a Sahlqvist quasiequation in \land , \neg , 0 only valid in A.

There's an embedding $f: A \to B$ for a HA B s.t. $Up(B_*) \models \Phi$.

The partial map
$$f_* \colon B_* \rightsquigarrow A_*$$
 with

$$\mathsf{dom}(f_*) \coloneqq \{F \in \mathbf{B}_* : f^{-1}[F] \in \mathbf{A}_*\}$$

defined by the rule $F\longmapsto f^{-1}[F]$ is a surjective

partial negative p-morphism,

i.e., order preserving and s.t. for all $F \in \mathsf{dom}(f_*)$ and $G \in A_*$,

 $f_*(F) \subseteq G \Longrightarrow \exists H \in \mathsf{dom}(f_*) \text{ s.t. } F \subseteq H \text{ and } G \subseteq f_*(H).$

▶ By duality, the map $(f_*)^* \colon \mathsf{Up}(A_*) \to \mathsf{Up}(B_*)$, defined by

$$U\longmapsto B_*\smallsetminus \downarrow f_*[A_*\smallsetminus U],$$

is an embedding of pseudocomplemented semilattices.

Since $Up(B_*)$ validates Φ , we conclude that so does $Up(A_*)$.

Sahlqvist Canonicity for fragments of IPC with \wedge

Let Φ be a Sahlqvist quasiequation in the language of a fragment L of IPC comprising \wedge . For every L-subreduct A of a Heyting algebra, if $A \vDash \Phi$, then $Up(A_*) \vDash \Phi$.

The excluded middle $x \lor \neg x$ can be rendered as

 $\Psi = x \land y \leqslant z \& \neg x \land y \leqslant z \Longrightarrow y \leqslant z$

which is canonical in PSL. Furthermore, for every poset X,

 $\mathsf{Up}(\mathbb{X}) \vDash \Psi \iff$ the order of \mathbb{X} is the identity.

The bounded top width n formula btwn can be rendered as

$$\Phi_n = \bigotimes_{1 \leq i \leq n+1} \left(\neg (\neg x_i \land \bigwedge_{0 < j < i} x_j) \land y \leq z \right) \Longrightarrow y \leq z,$$

which is canonical in PSLs and for every poset X,

 $Up(X) \vDash \Phi_n \iff$ in principal upsets in X, every (n + 1)-element antichain is below an *n*-element one.

Remark. The formula btw_n cannot be rendered as an equation!

The intuitionistic Sahlqvist theory can be extended to any logic.

- A logic ⊢ is a substitution invariant finitary consequence relation on the set of formulas of some algebraic language.
- Given an algebra A, let Fi⊢(A) be the lattice of deductive filters of ⊢ on A, i.e., subsets of A closed under the rules of ⊢.
- The lattice Fi⊢(A) is algebraic with semilattice of compact elements Fi^ω_⊢(A).
- ► A logic \vdash is protoalgebraic if there exists a set of formulas $\Delta(x, y)$ such that $\emptyset \vdash \Delta(x, x)$ and $x, \Delta(x, y) \vdash y$.

Most logics with a very weak implication are protoalgebraic as witnessed by the set $\Delta = \{x \rightarrow y\}$.

- A logic \vdash is said to have:
 - the inconsistency lemma (IL) when for every n ∈ Z⁺ there exists a finite set ~_n(x₁,..., x_n) of formulas s.t.

 $\Gamma \cup \{\varphi_1, \ldots, \varphi_n\}$ is inconsistent iff $\Gamma \vdash \sim_n (\varphi_1, \ldots, \varphi_n);$

► the deduction theorem (DT) when there exists a finite set x ⇒ y of formulas s.t.

$$\Gamma, \varphi \vdash \psi \text{ iff } \Gamma \vdash \varphi \Rightarrow \psi;$$

• the proof by cases (PC) when there exists a finite set $x \lor y$ of formulas s.t.

$$arGamma, arphi dash \gamma$$
 and $arGamma, \psi dash \gamma$ iff $arGamma, arphi igvee \psi dash \gamma$.

The structure of the semilattices $Fi^{\omega}_{\vdash}(A)$ determines the validity of these properties in a logic \vdash .

Theorem (Blok & Pigozzi, Czelakowski & Dziobiak, Raftery) A protoalgebraic logic ⊢ has the IL (resp. DT, PC) iff the

A protoalgebraic logic \vdash has the IL (resp. D1, PC) if the semilattice $Fi_{\vdash}^{\omega}(A)$ is pseudocomplemented (resp. implicative semilattice, distributive lattice) for every algebra A.

A formula $\varphi(x_1, \ldots, x_n)$ of IPC is compatible with a logic \vdash when

- ▶ If \neg occurs in φ , then \vdash has the IL;
- ▶ If \rightarrow occurs in φ , then \vdash has the DT;
- ▶ If \lor occurs in φ , then \vdash has the PC.

In this case, for every $k \in \mathbb{Z}^+$ we define a finite set

$$\boldsymbol{\varphi}^k(x_1^1,\ldots,x_1^k,\ldots,x_n^1,\ldots,x_n^k)$$

of formulas of \vdash as follows:

• If
$$\varphi = x_i$$
, then $\varphi^k \coloneqq \{x_1^1, \dots, x_i^k\}$;
• If $\varphi = \psi_1 \land \psi_2$, then $\varphi^k \coloneqq \psi_1^k \cup \psi_2^k$;
• If $\varphi = \neg \psi$ and $\psi^k = \{\chi_1, \dots, \chi_m\}$, then

$$\boldsymbol{\varphi}^k \coloneqq \sim_{\boldsymbol{m}} (\chi_1, \ldots, \chi_m),$$

where $\sim_m (z_1, \ldots, z_m)$ is the set witnessing the IL for \vdash ; Similarly, for \lor and \rightarrow . The spectrum of an algebra A relative to a logic \vdash is the poset $Spec_{\vdash}(A)$ of the meet irreducible deductive filters of \vdash on A.

General Sahlqvist Theorem

TFEA for a Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \& \dots \& \varphi_m \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a protoalgebraic logic \vdash :

► The logic ⊢ validates the metarules

$$\frac{\Gamma, \boldsymbol{\varphi}_{1}^{k}(\vec{\gamma}_{1}, \ldots, \vec{\gamma}_{n}) \rhd \psi \quad \ldots \quad \Gamma, \boldsymbol{\varphi}_{m}^{k}(\vec{\gamma}_{1}, \ldots, \vec{\gamma}_{n}) \rhd \psi}{\Gamma \rhd \psi}$$

for all $k \in \mathbb{Z}^+$ and finite sets of formulas $\Gamma \cup \{\psi, \vec{\gamma_1}, \dots, \vec{\gamma_n}\}$; For every algebra A, we have $\text{Spec}_{\vdash}(A) \vDash \text{tr}(\Phi)$. Proof by example. Suppose that the Sahlqvist quasiequation

$$\Phi = x \land y \leqslant z \And \neg x \land y \leqslant z \Longrightarrow y \leqslant z.$$

corresponding to the excluded middle $x \vee \neg x$ is compatible with \vdash . Remark. The semilattice $\operatorname{Fi}_{\vdash}^{\omega}(A)$ is pseudocomplemented, for all A.

Suppose that ⊢ validates the metarules

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

• Then $\operatorname{Fi}_{\vdash}^{\omega}(Fm)$ validates Φ .

- By protoalgebraicity, $\mathsf{Fi}^{\omega}_{\vdash}(A)$ validates Φ , for every A.
- ▶ By Canonicity, $Up(Fi_{\vdash}^{\omega}(A)_{*}) \vDash \Phi$.
- As $Fi_{\vdash}(A)$ is an algebraic lattice,

 $\mathsf{Fi}_{\vdash}(A) \cong$ the lattice of filters of the semilattice $\mathsf{Fi}^{\omega}_{\vdash}(A)$.

- Consequently, $\text{Spec}_{\vdash}(A) \cong \text{Fi}^{\omega}_{\vdash}(A)_*$.
- ► Thus, $Up(Spec_{\vdash}(A)) \vDash \Phi$.
- ▶ By Correspondence, $Spec_{\vdash}(A) \vDash tr(\Phi)$.

Examples. Let \vdash be a protoalgebraic logic with the IL.

Corollary (Lávička & Přenosil)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \gamma_1, \ldots, \gamma_n \rhd \psi \qquad \Gamma, \sim_n (\gamma_1, \ldots, \gamma_n) \rhd \psi}{\Gamma \rhd \psi}$$

iff it is semisimple: the poset $\text{Spec}_{\vdash}(A)$ is discrete, for every A.

Corollary (for n = 1, Lávička, M., Raftery)

The logic \vdash validates the following metarules for $n \in \mathbb{Z}^+$:

$$\frac{\Gamma, \sim (\vec{\gamma}_1 \cup \dots \cup \vec{\gamma}_{i-1} \cup \sim \vec{\gamma}_i) \triangleright \psi \text{ for every } 1 \leqslant i \leqslant n+1}{\Gamma \triangleright \psi}$$

iff it has bounded top width n: the principal upsets in $\text{Spec}_{\vdash}(A)$ have at most n maximal elements, for every A.

A concrete example.

For every $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ and φ , we write

$$\Gamma \to \varphi \coloneqq (\gamma_1 \to (\gamma_2 \to (\dots (\gamma_{n-1} \to \gamma_n) \dots))) \to \varphi$$

Then for every Sahlqvist quasiequation

$$\Phi = \varphi_1 \land y \leqslant z \And \dots \And \varphi_n \land y \leqslant z \Longrightarrow y \leqslant z$$

compatible with a logic \vdash , we define a set of formulas

$$\Phi^* := \bigcup_{k \in \mathbb{Z}^+} ((\varphi_1^k \to x) \cup \cdots \cup (\varphi_n^k \to x)) \to x.$$

Salhqvist Canonicity for fragments of IPC with ightarrow

Let L be a fragment of IPC comprising \rightarrow . For every L-subreduct A of a Heyting algebra,

if
$$A \vDash \Phi^*$$
, then $\mathsf{Up}(\mathsf{Spec}_{\mathsf{L}}(A)) \vDash \Phi^*$,

where $\text{Spec}_{L}(A)$ is the poset of meet irr. implicative filters of A.

Thank you very much for your attention!