Varieties of De Morgan monoids and axiomatic extension of Relevance Logic

Tommaso Moraschini (based on joint work with J. Raftery and J. Wannenburg)

Institute of Computer Science of the Czech Academy of Sciences

June 14, 2018

Contents

1. De Morgan monoids and Relevance Logic

- 2. Sugihara monoids: the idempotent case
- 3. Minimal varieties
- 4. Structural completeness
- 5. The variety M
- 6. Beth definability property

1/43

Definition

An involutive residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \neg, t \rangle$ such that

- $\langle A, \wedge, \vee \rangle$ is a lattice.
- \blacktriangleright $\langle A, \cdot, t \rangle$ is a commutative monoid.
- ▶ $\neg \neg a = a$ for every $a \in A$.
- For every $a, b, c \in A$ we have

 $a \cdot b \leq c \iff b \cdot \neg c \leq \neg a.$

• Setting $x \to y := \neg (x \cdot \neg y)$, we have:

$$\begin{aligned} x \cdot y &\leq z \iff y \cdot \neg z \leq \neg x \\ & \iff \neg(\neg x) \leq \neg(y \cdot \neg z) \\ & \iff x \leq y \to z. \end{aligned}$$

• Therefore $\langle A, \wedge, \vee, \cdot, \rightarrow, t \rangle$ is a residuated lattice.

Definition

A De Morgan monoid is an involutive and distributive residuated lattice that satisfies $x \le x \cdot x$.

- De Morgan monoids form a variety, i.e. an equational class, which we denote by DMM.
- ▶ In a De Morgan monoid **A** we write $f := \neg t$. Then

$$\neg a = a \rightarrow f$$
, for every $a \in A$.

2/43

Example (Sugihara monoids)

Consider the non-zero integers

$$Z^* \coloneqq \{a \in Z : a \neq 0\}$$

- ► Equip it with the lattice operations corresponding to the standard ordering (Z, ≤) and let ¬ be the additive inversion.
- Set t := 1 and define the monoidal operation

$$b \cdot a = a \cdot b = \begin{cases} a \wedge b & \text{if } |a| = |b| \\ a & \text{if } |a| > |b| \end{cases}$$

- The algebra $\mathbf{Z}^* = \langle Z^*, \wedge, \vee, \cdot, \neg, t \rangle$ is a De Morgan monoid.
- ▶ V(Z*) is the variety SM of Sugihara monoids, i.e. idempotent De Morgan monoids.
- ► Boolean algebras are Sugihara monoids.

5 / 43

 There is a dual lattice isomorphism between the lattice Ext(R^t) of axiomatic extensions of R^t and the lattice Var(DMM) of varieties of De Morgan monoids:

 $\mathsf{Alg}(\cdot) \colon \mathsf{Ext}(\mathsf{R}^{\mathbf{t}}) \longleftrightarrow \mathsf{Var}(\mathsf{DMM}) \colon \vdash_{(\cdot)}$

▶ Thus Ext(R^t) can be studied through the lenses of Var(DMM).

Details

- Given ⊢ in Ext(R^t), the class Alg(⊢) is the variety of De Morgan monoids axiomatized by {t ≤ φ: ∅ ⊢ φ}.
- Given K in Var(DMM), the logic \vdash_{K} is obtained extending R^{t} with the axioms $\{\varphi \colon \mathsf{K} \models t \leq \varphi\}$.
- For instance, ⊢_{SM} is the axiomatic extension obtained adding the Mingle Axiom x → (x → x) to R^t.

Remark

Every variety of De Morgan monoids K determines a logic \vdash_{K} .

 \blacktriangleright More precisely, for every ser $\varGamma \cup \{\varphi\}$ of formulas, we set

 $\Gamma \vdash_{\mathsf{K}} \varphi \iff \text{there is } n \in \omega \text{ and } \gamma_1, \dots, \gamma_n \in \Gamma \text{ s.t.}$ for every $\boldsymbol{A} \in \mathsf{K}$ and hom $v \colon \boldsymbol{Fm} \to \boldsymbol{A}$, if $t \leq v(\gamma_1), \dots, v(\gamma_n)$, then $t \leq v(\varphi)$.

- ▶ For K = DMM, we write R^t instead of \vdash_K .
- The logic ⊢_K is algebraizable, with K as its unique equivalent quasi-variety. This fact allows us to study most metalogical properties of ⊢_K is terms of purely algebraic properties of K.

6/43

Contents

- 1. De Morgan monoids and Relevance Logic
- 2. Sugihara monoids: the idempotent case
- 3. Minimal varieties
- 4. Structural completeness
- 5. The variety M
- 6. Beth definability property

Let A = ⟨A, ∧, ∨, ·, ¬, t⟩ be a De Morgan monoid. The negative cone of A is the algebra A⁻ = ⟨A⁻, ∧, ∨, →*, t⟩ s.t.

$$A^{-} \coloneqq \{a \in A \colon a \leq t\}$$

and for every $a, b \in A^-$,

$$a \rightarrow^* b \coloneqq (a \rightarrow^{\boldsymbol{A}} b) \wedge t$$

- ► Remark: The negative cone A⁻ is a Brouwerian algebra, i.e. the ⟨∧, ∨, →, t⟩-subreduct of a Heyting algebra.
- A seducing idea is to try to represent some De Morgan monoids, in terms of the more transparent structure of their negative cones.
- Accordingly, in this talk will describe some constructions which produce De Morgan monoids out of Brouwerian algebras.
- Let us start with some category equivalence, which work in the idempotent case, i.e. for Sugihara monoids.

9/43

Definition

Let X be a class of algebras of language \mathscr{L}_X and $\mathscr{L} \subseteq \mathscr{L}_X$. A set of equations θ in one variable is compatible with \mathscr{L} in X if for every *n*-ary operation $\varphi \in \mathscr{L}$ we have that:

 $\theta(x_1) \cup \cdots \cup \theta(x_n) \vDash_{\mathsf{X}} \theta(\varphi(x_1, \ldots, x_n)).$

▶ For every $\mathbf{A} \in X$, we let $\mathbf{A}(\theta, \mathscr{L})$ be the algebra

$$A(heta,\mathscr{L}) = \{ a \in A : oldsymbol{A} \models heta(a) \}$$

equipped with the restriction of the operations in \mathscr{L} .

• We obtain a functor $\theta_{\mathscr{L}} : \mathsf{X} \to \{ \mathbf{A}(\theta, \mathscr{L}) : \mathbf{A} \in \mathsf{X} \}.$

Theorem (McKenzie 96, M. 16)

If $\mathcal{F} \colon \mathsf{K} \to \mathsf{M}$ is a right adjoint functor between quasi-varieties, then \mathcal{F} is naturally isomorphic to $\theta_{\mathscr{L}} \circ [\kappa]$ for some κ, θ and \mathscr{L} .

• Rephrasing: right adjoints = twist-product constructions.

- Let X be a class of similar algebras and $\kappa > 0$ be a cardinal.
- Consider the language L^κ_X whose *n*-ary operations are the κ-sequences

 $\langle t_i : i < \kappa \rangle$ where each t_i is a term of X in variables $\vec{x_1}, \dots, \vec{x_n}$.

Definition

Given
$$\mathbf{A} \in X$$
, let $\mathbf{A}^{[\kappa]}$ be the \mathscr{L}_{X}^{κ} -algebra with universe A^{κ} s.t.

$$\langle t_i : i < \kappa \rangle^{\mathbf{A}^{[\kappa]}}(\vec{a}_1, \ldots, \vec{a}_n) = \langle t_i^{\mathbf{A}}(\vec{a}_1/\vec{x}_1, \ldots, \vec{a}_n/\vec{x}_n) : i < \kappa \rangle.$$

The κ -th matrix power of X is the class

 $\mathsf{X}^{[\kappa]} \coloneqq \mathbb{I}\{\boldsymbol{A}^{[\kappa]} : \boldsymbol{A} \in \mathsf{X}\}.$

• This construction extends to a functor $[\kappa]: X \to X^{[\kappa]}$.

10/43

Let's come back to Sugihara monoids:

Definition

- 1. Relative Stone algebras are $\langle \land, \lor, \rightarrow, t \rangle$ -subreduct of subdirect products of Heyting chains.
- 2. A relative Stone algebra with a Boolean constant is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, t, f \rangle$ where $\langle A, \wedge, \vee, \rightarrow, t \rangle$ is a relative Stone algebra and f is an element such that

$$a \lor (a \to f) = t$$
, for every $a \in A$.

We denote by bRSA the variety of relative Stone algebras with a Boolean constant.

- If A ∈ SM, then the algebra ↓ (A) := (A⁻, f) is a relative Stone algebra with a Boolean constant. This negative-cone construction is indeed a category equivalence ↓: SM → bRSA.
- What about the corresponding equivalence functor (twist-product construction) which transforms bRSA into SM?

▶ Let $\mathbf{A} = \langle A, \land, \lor, \rightarrow, t, f \rangle \in \mathsf{bRSA}$. We set

$$A^{\rhd \lhd} \coloneqq \{ \langle a, b \rangle \in A^2 \colon a \lor b = t \text{ and } a \land b \leq f \}.$$

► For every $\langle a, b \rangle, \langle c, d \rangle \in A^{\rhd \lhd}$,

$$egin{aligned} &\langle a,b
angle \sqcap \langle c,d
angle &\coloneqq \langle a\wedge c,b\vee d
angle \ &\langle a,b
angle \sqcup \langle c,d
angle &\coloneqq \langle a\vee c,b\wedge d
angle \ &\neg \langle a,b
angle &\coloneqq \langle b,a
angle \ &\langle a,b
angle \cdot \langle c,d
angle &\coloneqq \langle s,t
angle \end{aligned}$$

where

$$s := ((a \land f) \to d) \land [((c \land f) \to d) \to (a \land c)]$$

 $t := ((a \land f) \to d) \land ((c \land f) \to d) \land (s \land f).$

• The twist-product $\mathbf{A}^{\rhd \lhd} := \langle A^{\rhd \lhd}, \sqcap, \sqcup, \cdot, \neg, \langle t, f \rangle \rangle$ is a Sugihara monoid.

Theorem (Fussner, Galatos, Přenosil and Raftery)

The maps \downarrow (·): SM \longleftrightarrow bRSA: (·) $^{\triangleright \lhd}$ form a cat. equivalence.

13/43

Figure: Varieties of Sugihara monoids

- The category equivalence between SM and bRSA induces an isomorphism between the lattices of subquasi-varieties of SM and bRSA.
- In particular, the easy structure of Var(bRSA) can be used to describe Var(SM).

Varieties of Sugihara monoids

- Recall that $\mathbb{V}(\mathbf{Z}^*)$ is the variety SM of Sugihara monoids.
- ► Let Z be the algebra obtained adding 0 to Z* and making it be the neutral element of the monoidal operation. V(Z) is the variety OSM of odd Sugihara monoids.
- ▶ For every $n, m \in \omega$ with $m \neq 0$, let Z_{2n+1} and Z_{2m} be the subalgebras of Z and Z^* , respectively, with universes

 $\{-n,\ldots,-1,0,1,\ldots,n\}$ and $\{-m,\ldots,-1,1,\ldots,m\}$.

14/43

What about non-idempotent De Morgan monoids?

Theorem

- Let \boldsymbol{A} be a non-idempotent FSI De Morgan monoid.
- 1. The interval $[\neg(f^2), f^2]$ is the universe of a subalgebra of **A**.
- 2. **A** is the union of $[\neg(f^2), f^2]$ and two chains of idempotents, $(\neg(f^2)]$ and $[f^2)$.
- 3. $[\neg(f^2), f^2]$ can be squeezed producing a member of OSM.

- 1. De Morgan monoids and Relevance Logic
- 2. Sugihara monoids: the idempotent case

3. Minimal varieties

- 4. Structural completeness
- 5. The variety M
- 6. Beth definability property

17 / 43

- > Then consider a minimal variety K of De Morgan monoids.
- ▶ Its free 0-generated algebra **A** is either trivial or simple.
- If A is trivial, then K ⊨ t ≈ f. Hence K ⊆ OSM. Recall that the lattice of subvarieties of OSM was

$$\mathbb{V}(\emptyset) \subsetneq \mathbb{V}(\boldsymbol{Z}_3) \subsetneq \cdots \subsetneq \mathbb{V}(\boldsymbol{Z}_{2n+1}) \subsetneq \dots \mathbb{V}(\boldsymbol{Z}) = \mathsf{OSM}$$

- By minimality we conclude that $K = V(Z_3)$.
- Then suppose that A is simple. Clearly A is a homomorphic image of the free 0-generated De Morgan monoid.

Theorem (Slaney)

The free 0-generated De Morgan monoid **B** has 3088 elements!

In particular, *B* has exactly 3 simple homomorphic images *B*₂,
 *D*₄ and *C*₄. Then K is the variety generated by one of these algebras.

- A non-trivial variety is minimal if it has no proper non-trivial subvarieties.
- Minimal varieties of De Morgan monoids correspond to maximal consistent axiomatic extensions of R^t.
- Our first goal will be to characterize the minimal varieties of De Morgan monoids.

Lemma

Let K be a minimal variety of finite type with a constant symbol t. Then the free 0-generated algebra of K is either trivial or simple.

Idea: Pick K minimal such that the free 0-generated algebra A is non-trivial. Jónsson proved that every non-trivial finitely generated algebra of finite type has a simple homomorphic image. Then pick a simple $B \in \mathbb{H}(A)$. The free 0-generated algebra of $\mathbb{V}(B)$ is B itself. By minimality of K we have $\mathbb{V}(B) = K$. Hence A = B.

18/43

Theorem

The minimal varieties of De Morgan monoids are $\mathbb{V}(Z_3)$, $\mathbb{V}(B_2)$, $\mathbb{V}(D_4)$ and $\mathbb{V}(C_4)$. Hence there are exactly 4 maximal consistent axiomatic extensions of \mathbf{R}^t .

Figure: The algebras B_2 , D_4 and C_4

 Numerology of Relevance Logic: There are 68 minimal quasi-varieties of De Morgan monoids.

- 1. De Morgan monoids and Relevance Logic
- 2. Sugihara monoids: the idempotent case
- 3. Minimal varieties

4. Structural completeness

5. The variety M

6. Beth definability property

- Can we say something about admissibility in Relevance Logic thanks to the negative-cone construction?
- Let $\mathbf{R}^{\mathbf{t}}_{+}$ be the positive, i.e. $\langle \wedge, \vee, \cdot, \rightarrow, t \rangle$, fragment of $\mathbf{R}^{\mathbf{t}}$.
- ▶ Now, consider a formula φ written in the signature $\langle \land, \lor, \rightarrow \rangle$.
- \blacktriangleright We define recursively, the amended version φ^\diamond of φ :

$$\begin{aligned} x^{\diamond} &\coloneqq x \land e \\ \alpha \land \beta &\coloneqq \alpha^{\diamond} \land \beta^{\diamond} \\ \alpha \lor \beta &\coloneqq \alpha^{\diamond} \lor \beta^{\diamond} \\ \alpha \to \beta &\coloneqq (\alpha^{\diamond} \to \beta^{\diamond}) \land e. \end{aligned}$$

Theorem

If $\Gamma \rhd \varphi$ is an admissible rule of IPC in the signature $\langle \land, \lor, \rightarrow \rangle$, then $\Gamma^{\diamond} \rhd \varphi^{\diamond}$ is admissible in $\mathbf{R}_{+}^{\mathbf{t}}$. Moreover, if $\Gamma \rhd \varphi$ is not derivable in IPC, then $\Gamma^{\diamond} \rhd \varphi^{\diamond}$ is not derivable in $\mathbf{R}_{+}^{\mathbf{t}}$.

This trick does not extend to the full-signature R^t, where the amended Mints' rule is not admissible.

Definition

Let \vdash be a logic, i.e. a substitution-invariant consequence relation over formulas in an algebraic signature. A rule $\gamma_1, \ldots, \gamma_n \triangleright \varphi$ is:

- 1. Admissible in ⊢, if its addition to ⊢ produces no new tautologies.
- 2. Derivable in \vdash , if $\gamma_1, \ldots, \gamma_n \vdash \varphi$.

The logic \vdash is structurally complete if every admissible rule of \vdash is derivable in \vdash .

Theorem (Bergman)

Let \vdash be a finitary logic algebraized by a quasi-variety K. TFAE:

- 1. \vdash is structurally complete.
- 2. K is generated as a quasi-variety by $Fm_{K}(\omega)$.
- 3. Every finitely generated RSI member of K can be embedded into an ultrapower of $Fm_{\rm K}(\omega)$.
- ► Immediate observation: R^t is not structurally complete.

22 / 43

Admissibility can be split in two halves:

Definition

Let \vdash be a logic. A rule $\gamma_1, \ldots, \gamma_n \rhd \varphi$ is:

- 1. Passive in \vdash , if there is no substitution σ such that $\sigma(\gamma_1), \ldots, \sigma(\gamma_n)$ are theorems.
- 2. Active in \vdash , if it is not passive.

The logic \vdash is passively (resp. actively) structurally complete if every passive (resp. active) admissible rule of \vdash is derivable in \vdash .

Theorem (Bergman and Wroński)

Let \vdash be a finitary logic algebraized by a quasi-variety K. Then \vdash is passively structurally complete iff every positive existential sentence either holds in every member of K or in no non-trivial member of K.

- ► In what follows we focus on passive structural completeness.
- But, is there any interesting consequence of PSC?

^{21/43}

- A quasi-variety K has the joint embedding property (JEP) when for every non-trivial A, B ∈ K there are C ∈ K and embeddings f: A → C and g: B → C.
- ► The JEP is a completeness theorem w.r.t. a single algebra:

Theorem (Maltsev)

A quasi-variety has the JEP iff it is generated as a quasi-variety by a single algebra.

- ► What about the logical meaning of JEP?
- A logic ⊢ has the relevance principle (RP) is for every set of formulas Γ ∪ Δ ∪ {φ} s.t. Var(Γ ∪ {φ}) ∩ Var(Δ) = Ø,

if $\Gamma, \Delta \vdash \varphi$, then either Δ is incosistent or $\Gamma \vdash \varphi$.

Theorem

Let \vdash be a finitary logic algebraized by a quasi-variety K. \vdash has the RP iff K has the JEP. Moreover, if \vdash is PSC, then it has the RP.

25 / 43

Theorem

Let K be a non-trivial variety of De Morgan monoids. \vdash_{K} is PSC iff one of the following holds:

- 1. K is a variety of odd Sugihara monoids.
- 2. K is the variety $\mathbb{V}(B_2)$ of Boolean algebras.
- 3. $K = V(\boldsymbol{D}_4)$.
- 4. C_4 is a retract of all non-trivial members of K.
- A finer analysis shows that there exists a largest variety M of De Morgan monoids satisfying condition 4.

Let's turn back to PSC in De Morgan monoids:

Theorem

Let K be a non-trivial variety of De Morgan monoids. \vdash_{K} is PSC iff one of the following holds:

- 1. K is a variety of odd Sugihara monoids.
- 2. K is the variety $\mathbb{V}(\boldsymbol{B}_2)$ of Boolean algebras.
- 3. $K = V(\boldsymbol{D}_4)$.
- 4. C_4 is a retract of all non-trivial members of K.

Theorem (Hu)

If A is a primal algebra, then $\mathbb{V}(A)$ is categorically equivalent to the variety of Boolean algebras.

Remark

- Case 1: K is cat. eq. to a variety of relative Stone algebras.
- Case 2-3: K is cat. eq. to the variety of Boolean algebras.
- ▶ Case 1-2-3: The logic \vdash_{K} is structurally complete.

26 / 43

Figure: PSC varieties of De Morgan monoids

• Let us take a closer look at the structure theory of M:

Definition

A Dunn monoid is a distributive RL which satisfies $x \le x \cdot x$.

Given a Dunn monoid A, its reflection ℝ(A) is the algebra with universe A ∪ A' ∪ {0,1} defined as:

Figure: The reflection $\mathbb{R}(A)$ of A

29 / 43

Lemma

If **A** is a Dunn monoid, then $\mathbb{R}(\mathbf{A}) \in M$.

 Then the variety of Dunn monoid is exactly the class of RL-reducts of M.

Theorem (Urquhart)

The equational theory of Dunn monoids is undecidable.

Corollary

The equational theory of M is undecidable. M is not generated by its finite members (since it has a finite equational basis).

Contents

- 1. De Morgan monoids and Relevance Logic
- 2. Sugihara monoids: the idempotent case
- 3. Minimal varieties
- 4. Structural completeness
- 5. The variety M
- 6. Beth definability property

30 / 43

• Given a variety of Dunn monoids K, we set

 $\mathbb{R}(\mathsf{K}) = \mathbb{V}(\{\mathbb{R}(\boldsymbol{A}) : \boldsymbol{A} \in \mathsf{K}\}) \subseteq \mathsf{M}.$

Lemma

Consider the map \mathbb{R} : Var(DuM) \rightarrow Var(M).

- 1. \mathbb{R} is order-reflecting and, therefore, injective.
- 2. \mathbb{R} preserves structural incompleteness.
- ► Then M has uncountably many structurally incomplete subvarieties, e.g. apply ℝ to varieties of Brouwerian algebras.

- In general not every FSI member of M is a reflection of a Dunn monoid.
- ▶ We need a more general construction: skew reflections.

Theorem

The FSI members of M coincide with skew reflections of Dunn monoids in which $e \leq f$.

- Unfortunately, the same Dunn monoid may have different skew reflections.
- Developing the study of skew reflections and using combinatorial arguments, we obtain a characterization of the covers of V(C₄) in M.

33 / 43

Theorem

There are exactly 6 covers of $\mathbb{V}(\boldsymbol{\mathcal{C}}_4)$ in M, all of which are finitely generated.

There there are exactly 6 PSC axiomatic extensions of R^t whose unique consistent axiomatic extension is \(\mathcal{V}(C_4)\).

Theorem

Let K be the varietal join of these 6 covers. K is primitive, i.e. every subquasi-variety of K is a variety. Thus all axiomatic extensions of \vdash_{K} are structurally complete.

Trick: Use Fleischer's Lemma.

- 1. De Morgan monoids and Relevance Logic
- 2. Sugihara monoids: the idempotent case
- 3. Minimal varieties
- 4. Structural completeness
- 5. The variety M

6. Beth definability property

37 / 43

Definition

Let K be a quasi-variety and $\boldsymbol{B} \in K$. A subalgebra $\boldsymbol{A} \leq \boldsymbol{B}$ is K-epic if for every pair of homomorphisms $f, g: \boldsymbol{B} \Rightarrow \boldsymbol{C} \in K$

if $f \upharpoonright_A = g \upharpoonright_A$, then f = g.

• K has the ESP iff no $\boldsymbol{B} \in K$ has a proper K-epic subalgebra.

Theorem (Campercholi)

- Let K be a quasi-variety and $\textbf{A} \leq \textbf{B} \in K$. TFAE:
- 1. \boldsymbol{A} is a K-epic subalgebra of \boldsymbol{B} .
- 2. For every $b \in B$ there is a primitive positive formula $\varphi(\vec{x}, y)$ and $\vec{a} \in A$ such that

 $\mathsf{K} \vDash \forall \vec{x}, y, z((\varphi(\vec{x}, y) \& \varphi(\vec{x}, z)) \to y \approx z) \text{ and } \boldsymbol{B} \vDash \varphi(\vec{a}, b).$

Definition

- Let K be a class of algebras.
- 1. A homomorphism $f: \mathbf{A} \to \mathbf{B}$ in K is an epimorphism in K if for every pair $g, h: \mathbf{B} \rightrightarrows \mathbf{C}$ of homomorphisms in K

if $g \circ f = h \circ f$, then g = h.

- 2. K has the (epimorphism surjectivity property) ESP if epimorphisms in K are surjective.
- Are epis surjective in a variety?
- Yes: Boolean algebras, Heyting algebras, lattices, semilattices and (Abelian) groups.
- ▶ No: distributive lattices, rings with unity and monoids.
- > Thus epimorphism surjectivity is not preserved in subvarieties!

Remark: The interest of the the ES property in logic is that it corresponds to the Beth definability property.

38 / 43

- Can we inherit some knowledge about the ESP from Brouwerian algebras to De Morgan monoids?
- The following observation goes in this direction:

Lemma

A variety of Dunn Monoids K has the ES property iff $\mathbb{R}(\mathsf{K})$ has it.

Natural question: Are there varieties of Brouwerian algebras lacking the ESP?

Theorem (Bezhanishvili, M. and Raftery)

There is a continuum of varieties of Brouwerian algebras without the ESP.

- ► There is a continuum of subvarieties of M lacking the ESP.
- Let's see some examples.

Figure: Varieties of Brouwerian algebras lacking the ES property

What about positive results on the ESP? Working with Esakia duality, we obtain:

Theorem (Bezhanishvili, M. and Raftery)

Varieties of Brouwerian algebras of bounded depth have the ESP. These include all finitely generated varieties of Brouwerian algebras.

- ► There is a continuum of subvarieties of M with the ESP.
- Can we generalize the above theorem to the setting of De Morgan monoids?

Theorem

Let K be a variety of De Morgan monoids, whose negative cones have bounded depth and whose FSI members are generated by their negative cones. Then K has the ESP.

• Obs: This result holds indeed for square-increasing [I]RLs.

42 / 43

41/43

Finally...

Thank you for your attention!