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Definition
An involutive residuated lattice is an algebra A = 〈A,∧,∨, ·,¬, t〉
such that
I 〈A,∧,∨〉 is a lattice.
I 〈A, ·, t〉 is a commutative monoid.
I ¬¬a = a for every a ∈ A.
I For every a, b, c ∈ A we have

a · b ≤ c ⇐⇒ b · ¬c ≤ ¬a.

I Setting x → y := ¬(x · ¬y), we have:

x · y ≤ z ⇐⇒ y · ¬z ≤ ¬x
⇐⇒ ¬(¬x) ≤ ¬(y · ¬z)

⇐⇒ x ≤ y → z .

I Therefore 〈A,∧,∨, ·,→, t〉 is a residuated lattice.
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Definition
A De Morgan monoid is an involutive and distributive residuated
lattice that satisfies x ≤ x · x .

I De Morgan monoids form a variety, i.e. an equational class,
which we denote by DMM.

I In a De Morgan monoid A we write f := ¬t. Then

¬a = a→ f , for every a ∈ A.
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Example (Sugihara monoids)
I Consider the non-zero integers

Z ∗ := {a ∈ Z : a 6= 0}.

I Equip it with the lattice operations corresponding to the
standard ordering 〈Z ,≤〉 and let ¬ be the additive inversion.

I Set t := 1 and define the monoidal operation

b · a = a · b =

{
a ∧ b if |a| = |b|
a if |a| > |b|.

I The algebra Z ∗ = 〈Z ∗,∧,∨, ·,¬, t〉 is a De Morgan monoid.
I V(Z ∗) is the variety SM of Sugihara monoids, i.e. idempotent

De Morgan monoids.
I Boolean algebras are Sugihara monoids.
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Remark
Every variety of De Morgan monoids K determines a logic `K.

I More precisely, for every ser Γ ∪ {ϕ} of formulas, we set

Γ `K ϕ⇐⇒ there is n ∈ ω and γ1, . . . , γn ∈ Γ s.t.
for every A ∈ K and hom v : Fm → A,
if t ≤ v(γ1), . . . , v(γn), then t ≤ v(ϕ).

I For K = DMM, we write Rt instead of `K.
I The logic `K is algebraizable, with K as its unique equivalent

quasi-variety. This fact allows us to study most metalogical
properties of `K is terms of purely algebraic properties of K.
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I There is a dual lattice isomorphism between the lattice
Ext(Rt) of axiomatic extensions of Rt and the lattice
Var(DMM) of varieties of De Morgan monoids:

Alg(·) : Ext(Rt)←→ Var(DMM) : `(·)

I Thus Ext(Rt) can be studied through the lenses of Var(DMM).

Details
I Given ` in Ext(Rt), the class Alg(`) is the variety of De

Morgan monoids axiomatized by {t ≤ ϕ : ∅ ` ϕ}.
I Given K in Var(DMM), the logic `K is obtained extending Rt

with the axioms {ϕ : K |= t ≤ ϕ}.
I For instance, `SM is the axiomatic extension obtained adding

the Mingle Axiom x → (x → x) to Rt.
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I Let A = 〈A,∧,∨, ·,¬, t〉 be a De Morgan monoid. The
negative cone of A is the algebra A− = 〈A−,∧,∨,→∗, t〉 s.t.

A− := {a ∈ A : a ≤ t}

and for every a, b ∈ A−,

a→∗ b := (a→A b) ∧ t

I Remark: The negative cone A− is a Brouwerian algebra, i.e.
the 〈∧,∨,→, t〉-subreduct of a Heyting algebra.

I A seducing idea is to try to represent some De Morgan
monoids, in terms of the more transparent structure of their
negative cones.

I Accordingly, in this talk will describe some constructions which
produce De Morgan monoids out of Brouwerian algebras.

I Let us start with some category equivalence, which work in the
idempotent case, i.e. for Sugihara monoids.
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I Let X be a class of similar algebras and κ > 0 be a cardinal.
I Consider the language L κ

X whose n-ary operations are the
κ-sequences

〈ti : i < κ〉 where each ti is a term of X
in variables ~x1, . . . , ~xn.

Definition

Given A ∈ X, let A[κ] be the L κ
X -algebra with universe Aκ s.t.

〈ti : i < κ〉A
[κ]

(~a1, . . . , ~an) = 〈tAi (~a1/~x1, . . . , ~an/~xn) : i < κ〉.

The κ-th matrix power of X is the class

X[κ] := I{A[κ] : A ∈ X}.

I This construction extends to a functor [κ] : X→ X[κ].
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Definition
Let X be a class of algebras of language LX and L ⊆ LX. A set
of equations θ in one variable is compatible with L in X if for every
n-ary operation ϕ ∈ L we have that:

θ(x1) ∪ · · · ∪ θ(xn) �X θ(ϕ(x1, . . . , xn)).

I For every A ∈ X, we let A(θ,L ) be the algebra

A(θ,L ) = {a ∈ A : A |= θ(a)}

equipped with the restriction of the operations in L .
I We obtain a functor θL : X→ {A(θ,L ) : A ∈ X}.

Theorem (McKenzie 96, M. 16)
If F : K→ M is a right adjoint functor between quasi-varieties,
then F is naturally isomorphic to θL ◦ [κ] for some κ, θ and L .

I Rephrasing: right adjoints = twist-product constructions.
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I Let’s come back to Sugihara monoids:

Definition
1. Relative Stone algebras are 〈∧,∨,→, t〉-subreduct of subdirect

products of Heyting chains.
2. A relative Stone algebra with a Boolean constant is an algebra

A = 〈A,∧,∨,→, t, f 〉 where 〈A,∧,∨,→, t〉 is a relative Stone
algebra and f is an element such that

a ∨ (a→ f ) = t, for every a ∈ A.

We denote by bRSA the variety of relative Stone algebras with
a Boolean constant.

I If A ∈ SM, then the algebra ↓ (A) := 〈A−, f 〉 is a relative
Stone algebra with a Boolean constant. This negative-cone
construction is indeed a category equivalence ↓ : SM→ bRSA.

I What about the corresponding equivalence functor
(twist-product construction) which transforms bRSA into SM?
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I Let A = 〈A,∧,∨,→, t, f 〉 ∈ bRSA. We set

A�� := {〈a, b〉 ∈ A2 : a ∨ b = t and a ∧ b ≤ f }.
I For every 〈a, b〉, 〈c , d〉 ∈ A��,

〈a, b〉 u 〈c , d〉 := 〈a ∧ c , b ∨ d〉
〈a, b〉 t 〈c , d〉 := 〈a ∨ c , b ∧ d〉

¬〈a, b〉 := 〈b, a〉
〈a, b〉 · 〈c , d〉 := 〈s, t〉

where

s := ((a ∧ f )→ d) ∧ [((c ∧ f )→ d)→ (a ∧ c)]

t := ((a ∧ f )→ d) ∧ ((c ∧ f )→ d) ∧ (s ∧ f ).

I The twist-product A�� := 〈A��,u,t, ·,¬, 〈t, f 〉〉 is a
Sugihara monoid.

Theorem (Fussner, Galatos, Přenosil and Raftery)
The maps ↓ (·) : SM←→ bRSA : (·)�� form a cat. equivalence.
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I The category equivalence between SM and bRSA induces an
isomorphism between the lattices of subquasi-varieties of SM
and bRSA.

I In particular, the easy structure of Var(bRSA) can be used to
describe Var(SM).

Varieties of Sugihara monoids
I Recall that V(Z ∗) is the variety SM of Sugihara monoids.
I Let Z be the algebra obtained adding 0 to Z ∗ and making it

be the neutral element of the monoidal operation. V(Z ) is the
variety OSM of odd Sugihara monoids.

I For every n,m ∈ ω with m 6= 0, let Z 2n+1 and Z 2m be the
subalgebras of Z and Z ∗, respectively, with universes

{−n, . . . ,−1, 0, 1, . . . , n} and {−m, . . . ,−1, 1, . . . ,m}.
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Figure: Varieties of Sugihara monoids
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I What about non-idempotent De Morgan monoids?

Theorem
Let A be a non-idempotent FSI De Morgan monoid.
1. The interval [¬(f 2), f 2] is the universe of a subalgebra of A.
2. A is the union of [¬(f 2), f 2] and two chains of idempotents,

(¬(f 2)] and [f 2).
3. [¬(f 2), f 2] can be squeezed producing a member of OSM.

f 2

¬(f 2)r
r

&%
'$A
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I A non-trivial variety is minimal if it has no proper non-trivial
subvarieties.

I Minimal varieties of De Morgan monoids correspond to
maximal consistent axiomatic extensions of Rt.

I Our first goal will be to characterize the minimal varieties of
De Morgan monoids.

Lemma
Let K be a minimal variety of finite type with a constant symbol t.
Then the free 0-generated algebra of K is either trivial or simple.

Idea: Pick K minimal such that the free 0-generated algebra A is
non-trivial. Jónsson proved that every non-trivial finitely generated
algebra of finite type has a simple homomorphic image. Then pick a
simple B ∈ H(A). The free 0-generated algebra of V(B) is B itself.
By minimality of K we have V(B) = K. Hence A = B.
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I Then consider a minimal variety K of De Morgan monoids.
I Its free 0-generated algebra A is either trivial or simple.
I If A is trivial, then K � t ≈ f . Hence K ⊆ OSM. Recall that

the lattice of subvarieties of OSM was

V(∅) ( V(Z 3) ( · · · ( V(Z 2n+1) ( . . .V(Z ) = OSM

I By minimality we conclude that K = V(Z 3).
I Then suppose that A is simple. Clearly A is a homomorphic

image of the free 0-generated De Morgan monoid.

Theorem (Slaney)
The free 0-generated De Morgan monoid B has 3088 elements!

I In particular, B has exactly 3 simple homomorphic images B2,
D4 and C 4. Then K is the variety generated by one of these
algebras.
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Theorem
The minimal varieties of De Morgan monoids are V(Z 3), V(B2),
V(D4) and V(C 4). Hence there are exactly 4 maximal consistent
axiomatic extensions of Rt.

Figure: The algebras B2, D4 and C 4

I Numerology of Relevance Logic: There are 68 minimal
quasi-varieties of De Morgan monoids.
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Definition
Let ` be a logic, i.e. a substitution-invariant consequence relation
over formulas in an algebraic signature. A rule γ1, . . . , γn � ϕ is:
1. Admissible in `, if its addition to ` produces no new

tautologies.
2. Derivable in `, if γ1, . . . , γn ` ϕ.

The logic ` is structurally complete if every admissible rule of ` is
derivable in `.

Theorem (Bergman)
Let ` be a finitary logic algebraized by a quasi-variety K. TFAE:
1. ` is structurally complete.
2. K is generated as a quasi-variety by FmK(ω).
3. Every finitely generated RSI member of K can be embedded

into an ultrapower of FmK(ω).

I Immediate observation: Rt is not structurally complete.
22 / 43

I Can we say something about admissibility in Relevance Logic
thanks to the negative-cone construction?

I Let Rt
+ be the positive, i.e. 〈∧,∨, ·,→, t〉, fragment of Rt.

I Now, consider a formula ϕ written in the signature 〈∧,∨,→〉.
I We define recursively, the amended version ϕ� of ϕ:

x� := x ∧ e

α ∧ β := α� ∧ β�

α ∨ β := α� ∨ β�

α→ β := (α� → β�) ∧ e.

Theorem
If Γ � ϕ is an admissible rule of IPC in the signature 〈∧,∨,→〉,
then Γ � � ϕ� is admissible in Rt

+. Moreover, if Γ � ϕ is not
derivable in IPC, then Γ � � ϕ� is not derivable in Rt

+.

I This trick does not extend to the full-signature Rt, where the
amended Mints’ rule is not admissible.
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I Admissibility can be split in two halves:

Definition
Let ` be a logic. A rule γ1, . . . , γn � ϕ is:
1. Passive in `, if there is no substitution σ such that
σ(γ1), . . . , σ(γn) are theorems.

2. Active in `, if it is not passive.
The logic ` is passively (resp. actively) structurally complete if
every passive (resp. active) admissible rule of ` is derivable in `.

Theorem (Bergman and Wroński)
Let ` be a finitary logic algebraized by a quasi-variety K. Then ` is
passively structurally complete iff every positive existential sentence
either holds in every member of K or in no non-trivial member of K.

I In what follows we focus on passive structural completeness.
I But, is there any interesting consequence of PSC?
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I A quasi-variety K has the joint embedding property (JEP)
when for every non-trivial A,B ∈ K there are C ∈ K and
embeddings f : A→ C and g : B → C .

I The JEP is a completeness theorem w.r.t. a single algebra:

Theorem (Maltsev)
A quasi-variety has the JEP iff it is generated as a quasi-variety by
a single algebra.

I What about the logical meaning of JEP?
I A logic ` has the relevance principle (RP) is for every set of

formulas Γ ∪∆ ∪ {ϕ} s.t. Var(Γ ∪ {ϕ}) ∩ Var(∆) = ∅,

if Γ,∆ ` ϕ, then either ∆ is incosistent or Γ ` ϕ.

Theorem
Let ` be a finitary logic algebraized by a quasi-variety K. ` has the
RP iff K has the JEP. Moreover, if ` is PSC, then it has the RP.
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I Let’s turn back to PSC in De Morgan monoids:

Theorem
Let K be a non-trivial variety of De Morgan monoids. `K is PSC iff
one of the following holds:
1. K is a variety of odd Sugihara monoids.
2. K is the variety V(B2) of Boolean algebras.
3. K = V(D4).
4. C 4 is a retract of all non-trivial members of K.

Theorem (Hu)
If A is a primal algebra, then V(A) is categorically equivalent to the
variety of Boolean algebras.

Remark
I Case 1: K is cat. eq. to a variety of relative Stone algebras.
I Case 2-3: K is cat. eq. to the variety of Boolean algebras.
I Case 1-2-3: The logic `K is structurally complete.
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Theorem
Let K be a non-trivial variety of De Morgan monoids. `K is PSC iff
one of the following holds:
1. K is a variety of odd Sugihara monoids.
2. K is the variety V(B2) of Boolean algebras.
3. K = V(D4).
4. C 4 is a retract of all non-trivial members of K.

I A finer analysis shows that there exists a largest variety M of
De Morgan monoids satisfying condition 4.
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Figure: PSC varieties of De Morgan monoids
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I Let us take a closer look at the structure theory of M:

Definition
A Dunn monoid is a distributive RL which satisfies x ≤ x · x .

I Given a Dunn monoid A, its reflection R(A) is the algebra
with universe A ∪ A′ ∪ {0, 1} defined as:

Figure: The reflection R(A) of A
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Lemma
If A is a Dunn monoid, then R(A) ∈ M.

I Then the variety of Dunn monoid is exactly the class of
RL-reducts of M.

Theorem (Urquhart)
The equational theory of Dunn monoids is undecidable.

Corollary
The equational theory of M is undecidable. M is not generated by
its finite members (since it has a finite equational basis).
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I Given a variety of Dunn monoids K, we set

R(K) = V({R(A) : A ∈ K}) ⊆ M.

Lemma
Consider the map R : Var(DuM)→ Var(M).
1. R is order-reflecting and, therefore, injective.
2. R preserves structural incompleteness.

I Then M has uncountably many structurally incomplete
subvarieties, e.g. apply R to varieties of Brouwerian algebras.
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I In general not every FSI member of M is a reflection of a
Dunn monoid.

I We need a more general construction: skew reflections.

Theorem
The FSI members of M coincide with skew reflections of Dunn
monoids in which e ≤ f .

I Unfortunately, the same Dunn monoid may have different skew
reflections.

I Developing the study of skew reflections and using
combinatorial arguments, we obtain a characterization of the
covers of V(C 4) in M.
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Figure: The covers of V(C 4) in M
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Theorem
There are exactly 6 covers of V(C 4) in M, all of which are finitely
generated.

I There there are exactly 6 PSC axiomatic extensions of Rt

whose unique consistent axiomatic extension is `V(C4).

Theorem
Let K be the varietal join of these 6 covers. K is primitive, i.e. every
subquasi-variety of K is a variety. Thus all axiomatic extensions of
`K are structurally complete.

I Trick: Use Fleischer’s Lemma.
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Definition
Let K be a class of algebras.
1. A homomorphism f : A→ B in K is an epimorphism in K if

for every pair g , h : B ⇒ C of homomorphisms in K

if g ◦ f = h ◦ f , then g = h.

2. K has the (epimorphism surjectivity property) ESP if
epimorphisms in K are surjective.

I Are epis surjective in a variety?
I Yes: Boolean algebras, Heyting algebras, lattices, semilattices

and (Abelian) groups.
I No: distributive lattices, rings with unity and monoids.
I Thus epimorphism surjectivity is not preserved in subvarieties!

Remark: The interest of the the ES property in logic is that it
corresponds to the Beth definability property.
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Definition
Let K be a quasi-variety and B ∈ K. A subalgebra A ≤ B is K-epic
if for every pair of homomorphisms f , g : B ⇒ C ∈ K

if f �A= g �A , then f = g .

I K has the ESP iff no B ∈ K has a proper K-epic subalgebra.

Theorem (Campercholi)
Let K be a quasi-variety and A ≤ B ∈ K. TFAE:
1. A is a K-epic subalgebra of B.
2. For every b ∈ B there is a primitive positive formula ϕ(~x , y)

and ~a ∈ A such that

K � ∀~x , y , z((ϕ(~x , y) &ϕ(~x , z))→ y ≈ z) and B � ϕ(~a, b).
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I Can we inherit some knowledge about the ESP from
Brouwerian algebras to De Morgan monoids?

I The following observation goes in this direction:

Lemma
A variety of Dunn Monoids K has the ES property iff R(K) has it.

I Natural question: Are there varieties of Brouwerian algebras
lacking the ESP?

Theorem (Bezhanishvili, M. and Raftery)
There is a continuum of varieties of Brouwerian algebras without
the ESP.

I There is a continuum of subvarieties of M lacking the ESP.
I Let’s see some examples.
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Figure: Varieties of Brouwerian algebras lacking the ES property
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I What about positive results on the ESP? Working with Esakia
duality, we obtain:

Theorem (Bezhanishvili, M. and Raftery)
Varieties of Brouwerian algebras of bounded depth have the ESP.
These include all finitely generated varieties of Brouwerian algebras.

I There is a continuum of subvarieties of M with the ESP.
I Can we generalize the above theorem to the setting of De

Morgan monoids?

Theorem
Let K be a variety of De Morgan monoids, whose negative cones
have bounded depth and whose FSI members are generated by their
negative cones. Then K has the ESP.

I Obs: This result holds indeed for square-increasing [I]RLs.
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Finally...

Thank you for your attention!
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