Varieties of positive interior algebras: structural completeness

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences

November 14, 2017

1/18

▶ We focus on two central varieties of (positive) modal algebras:

Recall that...

- The algebraic semantics of K4 consists of K4-algebras, i.e. modal algebras validating □x ≤ □□x (equiv. ◊◊x ≤ ◊x).
- The algebraic semantics of S4 consists of interior algebras, i.e. modal algebras validating □□x ≤ □x ≤ x (equiv. x ≤ ◊x ≤ ◊◊x).

Definition

Let \boldsymbol{A} be a positive modal algebra.

- 1. **A** is a positive K4-algebra if it satisfies $\Box x \leq \Box \Box x$ and $\Diamond \Diamond x \leq \Diamond x$. We denote by PK4 the variety they form.
- 2. A is a positive interior algebra if it satisfies $\Box \Box x \leq \Box x \leq x$ and $x \leq \Diamond x \leq \Diamond \Diamond x$. We denote by PIA the variety they form.
- Positive K4-algebras (resp. interior algebras) are subreducts of K4-algebras (resp. interior algebras).

 $\Box 1 \approx 1 \text{ and } \Box (x \wedge y) \approx \Box x \wedge \Box y.$

- Modal algebras can be presented also as BAs with a unary operation ◇. The two presentations produce term-equivalent varieties setting □x := ¬◇¬x and ◇x := ¬□¬x.
- ► Positive modal algebras are (∧, ∨, □, ◇, 0, 1)-subreducts of modal algebras. Equivalently...

Definition

An algebra $\mathbf{A} = \langle A, \wedge, \vee, \Box, \diamond, 0, 1 \rangle$ is a positive modal algebra if $\langle A, \wedge, \vee, 0, 1 \rangle$ is a bounded distributive lattice s.t. for all $a, b \in A$,

 $\Box(a \wedge b) = \Box a \wedge \Box b \quad \diamondsuit(a \lor b) = \diamondsuit a \lor \diamondsuit b$ $\Box a \wedge \diamondsuit b \le \diamondsuit(a \wedge b) \quad \Box(a \lor b) \le \Box a \lor \diamondsuit b.$

Positive modal algebras form a variety (a.k.a. equational class).

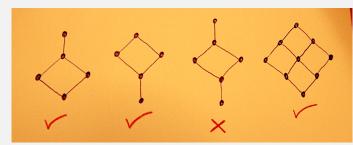
2/18

- It is well the congruences of a modal algebra A are in one-to-one correspondence with its open filters.
- Fundamental application: This correspondence identifies subdirectly irreducible modal algebras as those which have a smallest open filter different from {1}.
- Problem: The correspondence between congruences and open filters is lost in the positive setting. A useful description of subdirectly irreducible positive modal algebras is unknown.
- ► A couple of facts are known, e.g. every finitely subdirectly irreducible positive interior algebra *A* is well-connected, i.e.

if $\Box a \lor \Box b = 1$, then a = 1 or b = 1if $\Diamond a \land \Diamond b = 0$, then a = 0 or b = 0.

However, there are well-connected positive interior algebras, which are not finitely subdirectly irreducible.

• Some example of simple positive interior algebras:



 Obs: The positive interior algebras above contain a non-simple and non-trivial subalgebra (e.g. any four-element chain).

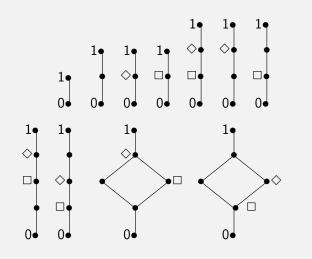
Corollary

Positive interior algebras do not have the congruence extension property (CEP). Thus they do not have EDPC.

This contrasts with the full signature case, since interior algebras have EDPC.

5/18

From the knowledge of the structure of the free one-generated positive interior algebra we can derive all one-generated subdirectly irreducible positive interior algebras:



 The free one-generated algebra of PK4 is infinite: it contains an infinite descending chain

$\{\llbracket \square^n x \rrbracket : n \in \omega\}.$

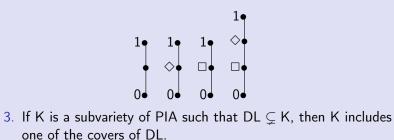
- The free two-generated positive interior algebra is infinite.
- While the free one-generated algebra of PIA is finite. This contrasts with the full-signature case.



 Playing with these one-generated subdirectly irreducible algebras, we obtain a description of the bottom part of the subvariety lattice Λ(PIA) of positive interior algebras.

Theorem

- 1. There is a unique minimal subvariety DL of PIA, term-equivalent to that of bounded distributive lattices.
- 2. The unique covers of DL in $\Lambda(PIA)$ are the ones generated by one of the following algebras D_3 , C_3^a , C_3^b and D_4 :



6/18

To climb higher (from bottom to top) in the lattice Λ(PIA), we need the following:

Definition

Let K be a variety. A subdirectly irreducible $A \in K$ is a splitting algebra in K if there is a largest subvariety of K excluding A.

Lemma (McKenzie)

If a congruence distributive variety is generated by its finite members, then its splitting algebras are finite.

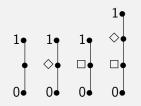
Corollary

Splitting algebras in PK4 and in PIA are finite.

Problem: Which finite s.i. algebras are splitting in PK4 and in PIA? In the full-signature case the answer is all (by EDPC). In the positive case it is unknown.

9/18

- Typical application: $\mathbb{V}(D_4)$ has no join-irreducible cover in $\Lambda(PIA)$.
 - Consider the positive interior algebras D_3 , C_3^a , C_3^b and D_4 :



▶ **D**₃ is splitting in PK4 with splitting identity

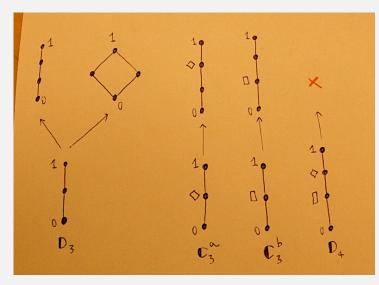
$$\Diamond_X \land \Box \Diamond_X \leq x \lor \Box_X \lor \Diamond \Box_X. \tag{1}$$

- C^a₃ and C^b₃ are splitting in PIA, respectively with splitting identities
 - $\Diamond \Box \Diamond x \approx \Diamond x \text{ and } \Box \Diamond \Box x \approx \Box x. \tag{2}$
- $\mathbb{V}(\boldsymbol{D}_4)$ is axiomatized by

$$\Box \diamondsuit x \approx \Box x \text{ and } \diamondsuit \Box x = \diamondsuit x. \tag{3}$$

• Since (3) is a consequence of (1, 2), we are done.

The next figure shows the join-irreducible covers of the varieties generated by D₃, C^a₃, C^b₃ and D₄ in Λ(PIA):



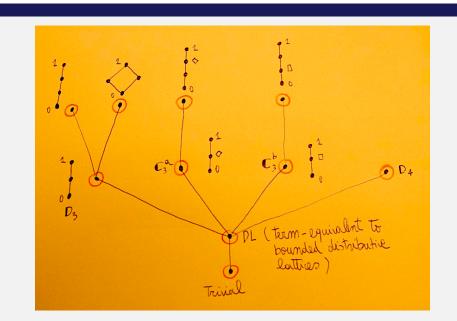


Figure: Join-irreducible varieties of depth \leq 4 in $\Lambda(PIA)$.

Definition

Let K be a variety and consider a quasi-equation

$$\Phi \coloneqq \varphi_1 \approx \psi_1 \& \dots \& \varphi_n \approx \psi_n \to \varphi \approx \psi$$

- 1. Φ is active in K when there is a substitution σ such that $\mathsf{K} \vDash \sigma \varphi_i \approx \sigma \psi_i$ for every $i \leq n$.
- 2. Φ is passive in K if it is not active in K.
- 3. Φ is admissible in K if for every substitution σ :

if $\mathsf{K} \vDash \sigma \varphi_i \approx \sigma \psi_i$ for every $i \leq n$, then $\mathsf{K} \vDash \sigma \varphi \approx \sigma \psi$.

4. Φ is derivable in K if $K \models \Phi$.

► Observe that passive quasi-equations are vacuously admissible.

13/18

Theorem

Let K be a SC variety of positive modal algebras. Either $\mathsf{K}=\mathbb{V}(\pmb{B}_2)$ or there are $n,m\geq 1$ such that

 $\mathsf{K} \vDash \Box_X \land \dots \land \Box^n x \leq x \text{ and } \mathsf{K} \vDash x \leq \Diamond_X \lor \dots \lor \Diamond^m x.$

Corollary

Let K be a SC variety of positive K4-algebras. Either $\mathsf{K}=\mathbb{V}(\boldsymbol{B}_2)$ or $\mathsf{K}\subseteq\mathsf{PIA}.$

 Hence, while trying to spot SC subvarieties of PK4, we can restrict to subvarieties of PIA.

Definition

Let K be a variety.

- 1. K is actively structurally complete (ASC) if every active admissible quasi-equation is derivable.
- 2. K is passively structurally complete (PSC) if every passive (admissible) quasi-equation is derivable.
- 3. K is structurally complete (SC) if every admissible quasi-equation is derivable.
- 4. K is hereditarily structurally complete (SHC) if every subvariety of K is SC.
- ► Clearly, (ASC) + (PSC) = (SC), and (SHC) implies (SC).
- We aim to understand the various structural completeness in subvarieties of PK4.

Theorem

Let K be a non-trivial variety of positive interior algebras. TFAE:

- 1. K is actively structurally complete.
- 2. K excludes D_3 , C_3^a and C_3^b .
- 3. K = DL or $K = V(D_4)$.
- 4. K is hereditarily structurally complete.
- 5. K is structurally complete.
- 6. K satisfies the equations $\Box \Diamond x \approx \Box x$ and $\Diamond \Box x \approx \Diamond x$.

Corollary

- Let K be a non-trivial variety of positive K4-algebras. TFAE:
- 1. K is structurally complete.
- 2. $\mathsf{K} = \mathbb{V}(\boldsymbol{B}_2)$ or $\mathsf{K} = \mathsf{DL}$ or $\mathsf{K} = \mathbb{V}(\boldsymbol{D}_4)$.
- 3. K is hereditarily structurally complete.
- There are only 3 non-trivial SC subvarieties of PK4.

- ▶ Problem: What about ASC and PSC subvarieties of PK4?
- ► For ASC the answer is unknown.
- Let C₂ be the two-element positive interior algebra. For PSC we have:

Theorem

- Let K be a non-trivial variety of positive K4-algebras. TAFE:
- 1. K is passively structurally complete.
- 2. Either $K = V(B_2)$ or $(Fm_K(0) = C_2$ and C_2 is the unique simple member of K).
- 3. Either $K = V(\boldsymbol{B}_2)$ or $(\boldsymbol{F}\boldsymbol{m}_K(0) = \boldsymbol{C}_2$ and K excludes \boldsymbol{D}_3).
- 4. Either $\mathsf{K} = \mathbb{V}(\boldsymbol{B}_2)$ or

 $\mathsf{K} \vDash \Diamond 1 \approx 1, \Box 0 \approx 0, \Diamond x \land \Box \Diamond x \leq x \lor \Box x \lor \Diamond \Box x.$

• There are infinitely many PSC subvarieties of PIA.

17/18

Finally...

...thank you for coming!