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Abstract. Positive modal algebras are the 〈∧,∨,3,�, 0, 1〉-subreducts
of modal algebras. We prove that the variety of positive S4-algebras is
not locally finite. On the other hand, the free one-generated positive
S4-algebra is shown to be finite. Moreover, we describe the bottom part
of the lattice of varieties of positive S4-algebras. Building on this, we
characterize (passively, hereditarily) structurally complete varieties of
positive K4-algebras.

1. Introduction

In recent years, subclassical fragments of modal logics have attracted
some attention because of their balance between expressive power and
lower computational complexity [2, 3, 45, 46]. Among these subclassical
fragments, a special role is played by the positive modal logic PML [19],
i.e. the 〈∧,∨,�,3, 0, 1〉-fragment of the local consequence of the normal
modal logic K [7, 13, 28, 36]. The interest of PML and its extensions
comes from the fact that, despite their restricted signature, they preserve
some mathematically desiderable features typical of normal modal logics,
including Sahlqvist theory and a well-behaved Priestley-style duality [10,
11, 25]. For similar reasons, PML and their generalizations were studied
both from the perspective of algebraic logic [30] and from that of coalgebra
[1, 48].

When suitably reformulated as a Gentzen system PML as in [10], the
logic PML becomes algebraizable in the sense of [51, 55] (see the Appendix
for a more detailed discussion). In particular, the algebraic counterpart of
PML is the class of the so-called positive modal algebras [19], i.e. positive
subreducts of classical modal algebras, which turn out to form a variety (or,
equivalently, by Birkhoff’s theorem, an equational class). As a consequence
of algebraizability, there is a dual lattice isomorphism between the lattice
of axiomatic extensions of PML and that of subvarieties of positive modal
algebras. Thus axiomatic extensions of PML can be studied through the
lenses of varieties of positive modal algebras, which in turn are amenable
to the methods of universal algebra [5, 9, 41]. Driven by this observation,
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in this paper we initiate the study of the lattice of subvarieties of positive
modal algebras. Since its structure is largely unknown, we focus on the
more definite goal of describing its structurally complete members.

For a general background on structural completeness we refer the reader
to [52, 58]. Even if structural completeness is usually understood as a
property of logics and not, strictly speaking, of classes of algebras, we find
it convenient to introduce this and some related concepts in purely algebraic
terms as in [4]. Let K be a quasi-variety, and consider a quasi-equation

Φ := ϕ1 ≈ ψ1& . . . &ϕn ≈ ψn → ϕ ≈ ψ.

The quasi-equation Φ is active in K when there is a substitution σ such
that K � σϕi ≈ σψi for every i 6 n. The quasi-equation Φ is passive in K
if it is not active in K. The quasi-equation Φ is admissible in K if for all
substitutions σ:

if K � σϕi ≈ σψi for every i 6 n, then K � σϕ ≈ σψ.

The quasi-equation Φ is valid in K if K � Φ. Accordingly, we say that
1. K is actively structurally complete (ASC) if every active admissible quasi-

equation is valid.
2. K is passively structurally complete (PSC) if every passive quasi-equation

is valid.1

3. K is structurally complete (SC) if every admissible quasi-equation is valid.
4. K is hereditarily structurally complete (HSC) if every subquasi-variety of K

is SC.
If ` is a finitary algebraizable logic or Gentzen system [8, 51, 55] with

equivalent algebraic semantics a quasi-variety K, then K is structurally
complete exactly when the finite admissible rules of ` are derivable in the
usual sense. This is the case, for instance, of the Gentzen system PML,
which is finitary and algebraized by the variety of positive modal algebras.

The interest of variants of structural completeness is partially due to
their influence on the structure of the lattices of subquasi-varieties. For
instance, if a quasi-variety K is HSC, then its lattice of subquasi-varieties
happens to be distributive [26, 27]. Moreover, if K is PSC, then all its
subquasi-varieties have the joint embedding property [44] and, therefore,
are generated as quasi-varieties by a single algebra [39]. On the other
hand, variants of structural completeness are interesting also from a purely
logical perspective. For instance, if a SC quasi-variety K has the finite
model property (i.e. K and the class of its finite members generate the
same variety), then K has the strong finite model property as well (i.e. it
is generated as a quasi-variety by its finite members), as observed in [47].
Finally, ASC is known to be related to projective and exact unification [20].

In [4, 20, 43, 59] the following characterizations of the various kinds of
structural completeness are obtained.

1Observe that passive quasi-equations are vacuously admissible.
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Theorem 1.1. Let K be a variety.

1. K is ASC if and only if A× FmK(ω) ∈ Q(FmK(ω)) for every subdirectly
irreducible algebra A ∈ K. If there is a constant symbol in the language,
then we can replace “A × FmK(ω) ∈ Q(FmK(ω))” by “A × FmK(0) ∈
Q(FmK(ω))” in this statement.

2. K is a PSC variety if and only if every positive existential sentence is either true
in all non-trivial members of K or false in all non-trivial members of K.

3. K is SC if and only if A ∈ SP
u
(FmK(ω)) for every subdirectly irreducible

algebra A ∈ K.
4. K is HSC if and only if every subquasi-variety of K is a variety.

Structural completeness and its variants have been the subject of intense
research in the setting of modal and Heyting algebras [58], yielding an array
of deep results. To name only a few of them, HSC varieties of K4-algebras,
and of Heyting algebras have been fully described in [57, 14]. Moreover,
explicit bases for the admissible rules of intuitionistic logic (equiv. of quasi-
equations admissible in the variety of Heyting algebras), and of some
prominent modal systems have been provided in [29, 31]. Unfortunately,
the picture of structural completeness tends to change dramatically when
the set of connectives is altered (see for instance [53]). Accordingly, we
should not expect, at least in principle, that results on admissibility and
structural completeness valid in modal algebras could be extended directly
to positive modal algebras.

Our results on structural completeness are confined to classes of positive
K4-algebras, i.e. positive subreducts of K4-algebras. In this context, we show
that there are exactly three non-trivial structurally complete varieties of
positive K4-algebras (Theorem 9.7). Moreover, these are also the unique
hereditarily structurally complete varieties of positive K4-algebras. This
contrasts with the full-signature case, since there are infinitely (countably)
many hereditarily structurally complete varieties of K4-algebras [57]. More-
over, we characterize passively structurally complete varieties of positive
K4-algebras (Theorem 9.8) and prove that there are infinitely many of them
(Example 9.9).

To establish these results, we rely on two observations concerning positive
S4-algebras, i.e. positive subreducts of S4-algebras, which may be of some
interest on their own. On the one hand, we show that, even if the variety
of positive S4-algebras is not locally finite (Corollary 5.4), its free one-
generated algebra is finite (Theorem 5.1). This contrasts with the full-
signature case, since already the one-generated free S4-algebra is infinite
[56]. On the other hand, we rely on a description of the bottom part of the
lattice of subvarieties of positive S4-algebras up to height 6 4 (Theorem 8.6),
represented pictorially in Figure 4. From a logical point of view, this result
provides a partial description of the top part of the lattice of axiomatic
extensions of the Gentzen system PML.
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We hope that this work may stimulate the further investigation of vari-
eties of positive modal algebras and of admissibility in positive modal logic,
whose theory is at the moment underdeveloped. In particular, it would be
interesting to find an explicit base for the admissible quasi-equations of the
variety of positive K4-algebras, complementing for instance the results of
[31].

2. Preliminaries

For a general background on universal algebra we refer the reader to
[5, 9, 41]. We denote by I,H,S,P,P

sd
,P

u
the class operators of closure

under isomorphism, homomorphic images, subalgebras, direct products,
subdirect products and ultraproducts respectively. Given an algebra A, we
denote by Con A its congruence lattice and by IdA the identity relation on
A. Then A is subdirectly irreducible when IdA is completely meet-irreducible
in Con A, i.e. when the poset Con Ar {IdA} has a least element θ. In this
case, the congruence θ is called the monolith of A. The monolith of A is
always a principal congruence, in fact θ = Cg(a, b) for every 〈a, b〉 ∈ θ such
that a 6= b. Similarly, an algebra A is finitely subdirectly irreducible if IdA is
meet-irreducible in Con A. Given a class of algebras K, we denote by Ksi
the class of its subdirectly irreducible members. An algebra A is simple
when Con A has exactly two-elements.

A variety is a class of algebras axiomatized by equations or, equivalently,
a class of algebras closed under H,S and P. A quasi-variety is a class
of algebras axiomatized by quasi-equations or, equivalently, a class of
algebras closed under I,S,P and P

u
. Given a class of algebras K, we

denote by V(K) and Q(K) respectively the least variety and quasi-variety
containing K. It is well known that V(K) = HSP(K) and Q(K) = ISPP

u
(K).

An algebra A in a quasi-variety K is subdirectly irreducible relative to K
if the poset 〈{θ ∈ Con A : A/θ ∈ K and θ 6= IdA},⊆〉 has a minimum
element. Every algebra in a quasi-variety K is a subdirect product of
algebras subdirectly irreducible relative to K. If K is a class of algebras,
then the algebras subdirectly irreducible relative to Q(K) belong to ISP

u
(K)

[16]. Given a quasi-variety K and n ∈ ω, we denote by FmK(x1, . . . , xn)
the free n-generated algebra over K. It is well known that the elements
of FmK(x1, . . . , xn) are congruence classes of terms, which we denote by
JϕK, JψK etc. The free countably-generated algebra over K is denoted by
FmK(ω).

Let K be a class of algebras. An algebra A ∈ K is projective in K if for
every B, C ∈ K and homomorphisms f : B→ C and g : A→ C where f is
surjective, there is a homomorphism h : A → B such that g = f ◦ h. An
algebra A is a retract of an algebra B if there are homomorphisms f : A→ B
and g : B → A such that the composition g ◦ f is the identity map on A.
It is well known that the projective algebras in a variety are exactly the
retracts of free algebras.
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Consider an algebra A and a sublanguage L of the language of A. The
L -reduct of A is the algebra 〈A, { f A : f ∈ L }〉. An algebra B in language
L is a L -subreduct of A if it can be embedded into the L -reduct of A. If
K is a quasi-variety and L is a sublanguage of the language of K, then
the class of L -subreducts of algebras in K coincides with the quasi-variety
generated by the L -reducts of algebras in K [39].

A variety K has the congruence extension property (CEP) if for every
A, B ∈ K such that B ∈ S(A), if θ is a congruence of B, then there is
a congruence φ of A such that φ ∩ B2 = θ. A variety K has equationally
definable principal congruences (EDPC) [35] if there is a finite set of equation
Φ(x, y, z, v) such that for every A ∈ K and a, b, c, d ∈ A we have:

〈a, b〉 ∈ Cg(c, d)⇐⇒ A � Φ(a, b, c, d).

It is easy to see that EDPC implies the CEP, however the converse impli-
cation does not hold in general. It is well known that both the variety of
(bounded) distributive lattices and the variety of K4-algebras have EDPC.
More precisely, given a (bounded) distributive lattice A and a, b, c, d ∈ A,
we have that

〈c, d〉 ∈ Cg(a, b)⇐⇒ (c ∧ a ∧ b = d ∧ a ∧ b and c ∨ a ∨ b = d ∨ a ∨ b). (1)

Moreover, given a K4-algebra A and a, b, c, d ∈ A, we have that

〈a, b〉 ∈ Cg(c, d)⇐⇒ A � (c↔ d) ∧�(c↔ d) 6 a↔ b. (2)

Finally, we will rely on the following easy observation, which is essen-
tially [52, Theorem 7.7].

Lemma 2.1. If K is a PSC variety with a constant symbol, its free 0-generated
algebra is either simple or trivial.

3. Algebras and frames

The algebraic study of the positive fragment of the normal modal logic
K was begun by Dunn in [19], where the following algebraic models were
introduced:

Definition 3.1. A positive modal algebra is a structure A = 〈A,∧,∨,�,3, 0, 1〉
where 〈A,∧,∨, 0, 1〉 is a bounded distributive lattice such that �1 = 1 and
30 = 0 and

�(a ∧ b) = �a ∧�b

3(a ∨ b) = 3a ∨3b

�a ∧3b 6 3(a ∧ b)

�(a ∨ b) 6 �a ∨3b

for every a, b ∈ A. We denote by PMA the variety of positive modal
algebras. The class PMA can be endowed with the structure of a category,
whose arrows are homomorphisms, and which we will denote also by PMA
since no confusion shall occur.
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It is worth remarking that the above equations were considered earlier
by Johnstone in the study of a localic version of the Vietoris construction
[32, 33].

A Priestley space is a triple 〈X,6, τ〉, where 〈X,6〉 is a poset and 〈X, τ〉
is a compact topological space, which satisfies the following additional
condition: for every x, y ∈ X such that x � y there is a clopen upset U
such that x ∈ U and y /∈ U. Priestley duality states that the category
of Priestley spaces, endowed with continuous order-preserving maps, is
dually equivalent to the category of bounded distributive lattices with
homomorphisms [49, 50, 17]. Building on Priestley duality, Celani and
Jansana presented a topological duality for positive modal algebras [11].
We will briefly review it, since it will be needed later on. Given a set X
and a binary relation R on it, we let �R,3R : P(X) → P(X) be the maps
defined for every V ⊆ X as follows:

�RV := {x ∈ X : if 〈x, y〉 ∈ R, then y ∈ V}
3RV := {x ∈ X : there is y ∈ X such that 〈x, y〉 ∈ R and y ∈ V}.

Definition 3.2. A K+-space is a structure 〈X,6, R, τ〉 where 〈X,6, τ〉 is a
Priestley space and R is a binary relation on X such that:
1. R = (R◦ 6) ∩ (R◦ 6−1).
2. The clopen upsets of τ are closed under the operations �R and 3R.
3. The set {y ∈ X : 〈x, y〉 ∈ R} is topologically closed for every x ∈ X.

Definition 3.3. Let X = 〈X,6X , RX , τX〉 and Y = 〈Y,6Y , RY , τY〉 be K+-
spaces. A p-morphism from X to Y is a continuous map f : X → Y, that
preserves 6 and R, and satisfies the following condition for every x, y ∈ X:

if 〈 f (x), y〉 ∈ RY , then there are z, v ∈ X such that

〈x, z〉, 〈x, v〉 ∈ RX and f (z) 6 y 6 f (v).

We denote by K+ the category of K+ spaces endowed with p-morphisms.

Positive modal algebras and K+-spaces are related as follows. Consider
A ∈ PMA and let Pr(A) be the collection of prime filters of A. Then we
define a relation RA ⊆ Pr(A)× Pr(A) as follows:

〈F, G〉 ∈ RA ⇐⇒ �−1(F) ⊆ G ⊆ 3−1(F)

for every F, G ∈ Pr(A). Moreover, for every a ∈ A we set

ϕ(a) := {F ∈ Pr(A) : a ∈ F}.
Finally, we let τ be the topology on Pr(A) generated by the following
subbasis:

{ϕ(a) : a ∈ A} ∪ {ϕ(a)c : a ∈ A}.
It turns out that the structure

A∗ := 〈Pr(A),⊆, RA, τ〉
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is a K+-space. Moreover, if f : A → B is a homomorphism between
positive modal algebras, then the map f ∗ : Pr(B) → Pr(A), defined for
every F ∈ Pr(B) as f ∗(F) := f−1[F], is a p-morphism from B∗ to A∗. It
turns out that the application ∗ : PMA→ K+ is a contravariant functor.

Conversely, consider a K+-space X and let Up(X) be the collection of
clopen upsets of 〈X,6, τ〉. It turns out that the structure

X∗ := 〈Up(X),∩,∪,�R,3R, ∅, X〉

is a positive modal algebra. Moreover, if f : X → Y is a p-morphism
between K+-spaces, then the map f∗ : Up(Y)→ Up(X), defined for every
V ∈ Up(Y) as f∗(V) := f−1[V], is a homomorphism from Y∗ to X∗. The
application ∗ : K+ → PMA is a contravariant functor as well. The relation
between positive modal algebras and K+-spaces can be formulated as
follows [11, pag. 700]:

Theorem 3.4 (Celani and Jansana). The functors ∗ : PMA←→ K+ : ∗ from a
dual category equivalence.

The above result implies that every positive modal algebra A is isomor-
phic to the algebra of clopen upsets of its dual K+-space. More precisely,
we have the following representation theorem, which is essentially [19,
Theorem 8.1], but see also [11, Theorem 2.2].

Theorem 3.5 (Celani, Dunn and Jansana). Consider A ∈ PMA. The map
κ : A→ (A∗)∗ defined by the rule

a 7−→ {F ∈ Pr(A) : a ∈ F}

is an isomorphism.

A useful consequence of this representation is the following correspon-
dence result:

Corollary 3.6. Consider A ∈ PMA.
1. RA is reflexive if and only if �a 6 a 6 3a for every a ∈ A.
2. RA is transitive if and only if �a 6 ��a and 33a 6 3a for every a ∈ A.

We will focus on the following varieties of positive modal algebras:

Definition 3.7. Let A ∈ PMA.
1. A is a positive K4-algebra if for every a ∈ A:

�a 6 ��a and 33a 6 3a.

2. A is a positive S4-algebra if for every a ∈ A:

��a = �a 6 a 6 3a = 33a.

We denote respectively by PK4 and PS4 the varieties of positive K4 and
S4-algebras. It is clear that PS4 ⊆ PK4.
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From Theorem 3.4 and Corollary 3.6 it follows that PK4 (resp. PS4) is
dually equivalent to the full subcategory K+, whose objects are K+-spaces
whose relation R is transitive (resp. transitive and reflexive). This dual
equivalence is witnessed by the restriction of the functors described above.
The following result motivates the name of positive K4 and S4-algebras:

Theorem 3.8. PMA, PKA and PS4 are respectively the classes of 〈∧,∨,�,3, 0, 1〉
subreducts of modal, K4 and S4-algebras.

Proof. Consider A ∈ PMA and define an algebra

M(A) := 〈P(Pr(A)),∩,∪,¬,�RA , 0, 1〉
where ¬ is the set-theoretic complement. It is very easy to see thatM(A)
is a modal algebra, and that that map κ : A→M(A), defined in Theorem
3.5, is an embedding that respects 〈∧,∨,�,3, 0, 1〉. Thus A is a positive
subreduct of a modal algebra.

Now consider A ∈ PK4. By Corollary 3.6 we know that RA is transitive.
In particular, this implies that M(A) is a K4-algebra. Thus the map
κ : A → M(A) embeds A into a K4-algebra preserving 〈∧,∨,�,3, 0, 1〉.
We conclude that A is a positive subreduct of a K4-algebra. On the other
hand, the equations defining PK4 hold in K4-algebras. Thus we conclude
that PK4 is the class of positive subreducts of K4-algebras. The case of PS4
is handled similarly. �

4. Well-connected algebras

Let A be a modal algebra. A lattice filter F of A is open if a ∈ F implies
�a ∈ F for every a ∈ A. The set of open filters of A, when ordered under
the inclusion relation, forms a lattice Op(A). It is well known [36] that the
lattices Op(A) and Con A are isomorphic under the map defined by the
following rule:

F 7−→ θF := {〈a, b〉 ∈ A2 : a→ b, b→ a ∈ F}.
An analogous correspondence holds between the congruences of A and
its ideals closed under 3. The correspondence between open filters and
congruences implies that a modal algebra A is subdirectly irreducible when
the poset 〈Op(A)r {{1}},⊆〉 has a minimum element [54]. In some cases
this condition can be shifted from subsets of the universe of A (such as
open filters) to elements of A. This happens for example in S4-algebras.2

An S4-algebra A is well-connected if �a ∨�b = 1 implies a = 1 or b = 1
for every a, b ∈ A [42]. The correspondence between open filters and
congruences implies that an S4-algebra is well-connected if and only if it
is finitely subdirectly irreducible. Moreover, an S4-algebra A is simple if
and only if �a = 0 for every a 6= 1 (see [36] if necessary). The notion of
well-connection can be adapted to positive S4-algebras as follows:

2Similar results hold for K4-algebras as well.
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Definition 4.1. A positive S4-algebra A is well-connected when for every
a, b ∈ A:
1. If �a ∨�b = 1, then a = 1 or b = 1.
2. If 3a ∧3b = 0, then a = 0 or b = 0.

It is worth observing that free positive S4-algebras are well-connected.
This follows immediately from the well-known fact that free S4-algebras
are well-connected or, equivalently, from the fact that the modal system S4
has the modal disjunction property.

The results in this section show that certain aspects of finitely subdirectly
irreducible and simple algebras are preserved from S4-algebras to their
positive subreducts. Given a positive modal algebra A, let M(A) be the
modal algebra defined the proof of Theorem 3.8.

Theorem 4.2. If A ∈ PS4 is finitely subdirectly irreducible, then so isM(A).

Proof. Consider a finitely subdirectly irreducible algebra A ∈ PS4. The
fact that A is a positive subreduct of an S4-algebra, together with the
correspondence between open filters and congruences typical of modal
algebras, easily implies that A is well-connected.

Since A is well-connected, the following sets are, respectively, a proper
filter and a proper ideal of A:

F := {a ∈ A : 3b 6 a for some b ∈ Ar {0}}
I := {a ∈ A : a 6 �b for some b ∈ Ar {1}}.

We claim that F∩ I = ∅. Suppose the contrary in view of a contradiction.
Then there is a ∈ F ∩ I, i.e. there are b, c ∈ A such that

0 < 3b 6 a 6 �c < 1.

Consider the embedding κ : A→M(A) defined in the proof of Theorem
3.8. Let F and G be respectively the upsets of ¬κ(3b) and κ(�c) inM(A).
From the fact that 3b and �c are respectively fixed points of 3 and �,
it follows that F and G are open filters. Since 3b 6 �c, we have that
F ∩ G = {1}. This means that θF ∩ θG = IdM(A). Define

φF := {〈x, y〉 ∈ A2 : 〈κ(x), κ(y)〉 ∈ θF}
φG := {〈x, y〉 ∈ A2 : 〈κ(x), κ(y)〉 ∈ θG}.

Clearly we have that φF ∩ φG = IdA. Moreover, neither φF not φG are the
identity relation, since 〈3b, 0〉 ∈ φF and 〈�c, 1〉 ∈ φG. But this contradicts
the fact that A is finitely subdirectly irreducible, establishing the claim.

From the claim it follows that F ∩ I = ∅. From the Prime Filter Theorem
it follows that there is a prime filter F∗ extending F and such that F∗ ∩ I = ∅.
In particular, we have that for every a ∈ A,

(�a ∈ F∗ =⇒ a = 1) and (3a /∈ F∗ =⇒ a = 0).
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This implies that for every G ∈ Pr(A),

�−1F∗ ⊆ G ⊆ 3−1F∗, for every G ∈ Pr(A). (3)

Suppose in view of a contradiction that M(A) is not subdirectly irre-
ducible, i.e. that it is not well-connected. Then there are two elements
X, Y ∈ M(A)r {1} such that �X ∨�Y = 1. Observe that

X, Y ∈ P(Pr(A))r {Pr(A)} and �X ∪�Y = Pr(A).

In particular, we have that F∗ ∈ �X ∪�Y. We can assume w.l.o.g. that
F∗ ∈ �X. From the definition of the operation � inM(A) it follows that
for every G ∈ Pr(A),

�−1F∗ ⊆ G ⊆ 3−1F∗ =⇒ G ∈ X.

Together with (3), this implies that X = Pr(A) which is a contradiction.
Hence we conclude thatM(A) is finitely subdirectly irreducible. �

Corollary 4.3. Consider A ∈ PS4 finitely subdirectly irreducible. A is well-
connected and for every a ∈ Ar {0, 1} either �a < a or a < 3a.

However the converse of Theorem 4.2 does not hold in general, as shown
in the next example. The failure of the converse is due to the fact that the
correspondence between open filters and congruences is lost, when we
move from S4-algebras to their positive subreducts.

Example 4.4. It is natural to wonder whether properties such as being well-
connected or being finitely subdirectly irreducible are preserved or reflected by
the passage from a positive S4-algebra A to the S4-algebraM(A). It turns
out that the situation is as follows:

(i) If A is finitely subdirectly irreducible, then so isM(A).
(ii) IfM(A) is well-connected, then so is A.

(iii) Even if A is well-connected,M(A) may fail to be so.
(iv) Even ifM(A) is finitely subdirectly irreducible, A may fail to be so.

Observe that (i) amounts to Theorem 4.2, while (ii) is clear.
(iii): Observe that in a positive S4-algebra we always have that 0 and 1

are fixed points of the modal operations. Consider the positive S4-algebra
A, whose lattice reduct is the three element chain 0 < a < 1 and such
that �a = 3a = 1. Clearly A is well-connected. However, M(A) is the
four element modal algebra where the modal operations are interpreted as
identity maps. In particular,M(A) is not well-connected.

(iv): Consider the positive S4-algebra A, whose lattice reduct is the five
element chain 0 < a < b < c < 1 and such that �e = 0 and 3e = 1 for
every e ∈ {a, b, c}. Consider the following equivalence relations, described
through their blocks:

θ := {{0}, {a, b}, {c}, {1}} and φ := {{0}, {a}, {b, c}, {1}}.
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Clearly θ, φ ∈ Con A and θ ∩ φ = IdA. Thus the identity relation is not meet-
irreducible in Con A and, therefore, A is not finitely subdirectly irreducible.
However, it is not hard to see thatM(A) is a simple S4-algebra. �

The failure of the correspondence between open filters and congruences
makes it hard to imagine a concrete description of subdirectly irreducible
positive S4-algebras.3 Additional difficulties in the description of subdirectly
irreducible positive modal algebras arise from the fact that the CEP (and,
therefore, also EDPC) fails in PS4 as shown in Example 4.6. Nevertheless it
is easy to obtain a complete description of all simple positive K4-algebras.
To this end, let B2 be the unique two-element positive modal algebra such
that 31 = 0 and �0 = 1.

Lemma 4.5. Let A be a non-trivial member of PK4. A is simple if and only if
either A = B2 or the following conditions hold:

(i) For every a ∈ A:

�a :=
{

1 if a = 1
0 otherwise 3a :=

{
0 if a = 0
1 otherwise.

(ii) For every a, b ∈ A such that 0 < a < b < 1, there is c ∈ Ar {0, 1} such
that

either (a 6 c and b ∨ c = 1) or (c 6 b and a ∧ c = 0).

Proof. We begin by proving the “only if” part. Suppose that A is simple and
not isomorphic to B2. We claim that �0 6= 1. To prove this suppose towards
a contradiction that �0 = 1. Then clearly by monotonicity �a = 1 for all
a ∈ A. From the fact that �0 = 1, it follows that 31 = 0. Together with
the fact that A is not isomorphic to B2, we obtain that there is an element
a ∈ A such that 0 < a < 1. Then consider the embedding κ : A →M(A)
defined in the proof of Theorem 3.8. Let F be the upset of κ(a) inM(A).
From the fact that �a = 1, it follows that F is an open filter. We have that

〈κ(a), 1〉 ∈ θF and 〈κ(a), 0〉 /∈ θF.

We define φ := {〈b, c〉 ∈ A2 : 〈κ(b), κ(c)〉 ∈ θF}. Clearly φ is a congruence
of A, that is neither the identity nor the total relation. Thus κ(A) is not
simple, which is a contradiction. This establishes our claim.

Now suppose towards a contradiction that there is an element a ∈
Ar {1} such that �a 6= 0. Then consider the embedding κ : A →M(A).
Let F be the principal filter generated by κ(�a) inM(A). We have that

〈κ(�a), 1〉 ∈ θF and 〈κ(�a), 0〉 /∈ θF.

Again we define φ := {〈b, c〉 ∈ A2 : 〈κ(b), κ(c)〉 ∈ θF}. Clearly φ is a
congruence of A, that is not the total relation on A, since 〈�a, 0〉 /∈ φ. Since

3It is worth remarking that subdirectly irreducible positive modal algebras have been
characterized by means of topological properties of their corresponding K+-spaces [12].
However, it is not straightforward to apply this characterization to the study of problems
such as the classifications of varieties of positive modal algebras.
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A is simple, this implies that φ is the identity relation on A. In particular,
this means that �a = 1. From our claim it follows that 0 6= a. Then consider
the upset F of κ(a) inM(A). From the fact that �a = 1, it follows that F is
an open filter. We have that

〈κ(a), 0〉 /∈ θF and 〈κ(a), 1〉 ∈ θF.

We define φ := {〈b, c〉 ∈ A2 : 〈κ(b), κ(c)〉 ∈ θF}. Clearly φ is a congruence
of A, that is neither the identity (since a 6= 1) not the total relation. Thus
A is not simple, which is a contradiction. We conclude �a = 0 for all
a 6= 1. A similar argument shows that 3a = 1 for every a 6= 0. The only
difference from the one described above is that this time one need to rely
on the correspondence between the congruences ofM(A) and its ideals
closed under 3.

Now, suppose towards a contradiction that there are a, b ∈ A such that
0 < a < b < 1 and for which condition (ii) of the statement fails. Consider
the congruence θ of the bounded lattice 〈A,∧,∨, 0, 1〉 generated by the pair
〈a, b〉. Clearly θ is not the identity relation. Applying EDPC for distributive
lattices as in (1), it is easy to see that {0} and {1} are blocks of θ. Thus θ is
not the total relation. Now we prove that θ is compatible w.r.t. � and 3.
Consider a pair 〈c, d〉 ∈ θ such that c 6= d. From the fact that {0} and {1}
are blocks of θ, it follows that 0 < c, d < 1. As we showed, this means that
�c = �d = 0 and 3c = 3d = 1. We conclude that θ is a congruence of A,
which contradicts the fact that A is simple. This establishes that condition
(ii) in the statement holds.

Then we turn to prove the “if” part. Observe that B2 is simple on
cardinality grounds. Then suppose that A satisfies conditions (i) and (ii) in
the statement. Suppose towards a contradiction that A is not simple. Then
there are two different elements a, b ∈ A such that Cg(a, b) is not the total
relation. We can assume w.l.o.g. that a < b. Observe that 0 < a. Suppose
towards a contradiction that a = 0. Then b < 1, since Cg(a, b) is not the
total relation. From condition (i) we know that 3a = 0 and 3b = 1. But this
implies that Cg(a, b) is the total relation, which is false. This establishes
that 0 < a. A similar argument shows that b < 1. Hence we have that
0 < a < b < 1 and we can apply condition (ii) in the statement. This
condition, together with EDPC for distributive lattices as in (1), implies
that there is c ∈ Ar {0, 1} such that either the pair 〈c, 1〉 or the pair 〈c, 0〉
belongs to Cg(a, b). Together with the fact that 3c = 1 and �c = 0, this
implies that 〈0, 1〉 ∈ Cg(a, b). But this means that Cg(a, b) is the total
congruence, which is a contradiction. �

As we promised, the next example shows that PS4 does not have the
CEP and, therefore, it does not have EDPC either. This contrasts with the
well-known fact that the variety of S4-algebras has EDPC.

Example 4.6. Consider any Boolean lattice 〈A,∧,∨, 0, 1〉 of at least 8 el-
ements. Then equip it with modal operations � and 3 defined as in
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condition (i) of Lemma 4.5. Let A be the resulting positive S4-algebra.
Consider any chain chain 0 < a < b < 1 in 〈A,6〉. Observe that setting
c := a ∨ ¬b, where ¬b is the Boolean complement of b, we have that

b ∨ c = 1 and a 6 c.

Hence A satisfies condition (ii) of Lemma 4.5. We conclude that A is a
simple algebra. Now consider any chain 0 < a < b < 1 in 〈A,6〉. Observe
that it is the universe of a subalgebra B of A. It is easy to see that B is not
simple. Therefore A is a simple algebra with a non-simple and non-trivial
subalgebra. We conclude that PS4 does not have the CEP. �

5. Free one-generated positive S4-algebra

Observe that the free one-generated positive K4-algebra is infinite. This
can be easily seen by observing that it contains the infinite ascending chain

J�xK < J�2xK < J�3xK < . . .

In this section we will prove that the situation changes for positive S4-
algebras, whose free one-generated algebra turns out to be finite. This fact
contrasts with the full-signature case, since it is well known that the free
one-generated S4-algebra is infinite, see for instance [56].

For the sake of simplicity, let us introduce a way of describing pictorially
positive S4-algebras. Let A be a positive S4-algebras. Then the structure of
A is uniquely determined by its Hasse diagram and the fixed points of the
modal operations. This is because for every a ∈ A, the element �a (resp.
3a) is the greatest fixed point of � below a (resp. smallest fixed point of 3
above a). Thus a way of describing the structure of A ∈ PS4 is to depict its
Hasse diagram and to mark with a � (resp. with a 3) the fixed points of �
(resp. of 3). We omit these marks for 0 and 1, which are always fixed points
of the modal operations, since A is a positive modal algebras. An example
of this way of representing positive S4-algebras is offered in Figure 1.

Theorem 5.1. The algebra A depicted in Figure 1 is the free one-generated positive
S4-algebra.

Proof. Consider the terms

Σ := {x,�x,3�x,�3�x,3x,�3x,�3�x}. (4)

We will make use of the following easy observation:

Fact 5.2. For every positive S4-algebra B and b ∈ B, the elements {ϕB(b) : ϕ ∈
Σ} ⊆ B form the following subposet of 〈B,6〉, where the lines indicate only the
order relation and must not be interpreted as referring to any description of meets
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1•
3•
•

• •3
• • •
• • • •

• • • •
a• • • •3 •�

• • • •
• • • •
• • •
• •�
•
�•
0•

Figure 1. The free one-generated positive S4-algebra

and joins, and whose elements are not necessarily different one from the other:

3b•

3�3b•

�3b• 3�b • •b

�3�b•

�b•
Now, let A be the algebra depicted in Figure 1. It is an easy exercise

to check that the algebra A is in fact a positive S4-algebra. Moreover,
the bounded lattice reduct of A is obtained as follows. First we consider
the free 7-generated bounded distributive lattice C, whose generators are
the terms in Σ. Second we form the quotient of C under the congruence
generated by following the set

Γ := {〈ϕ, ψ〉 ∈ Σ2 : ϕ(b) 6 ψ(b) in the above diagram}.

The algebra C/Cg(Γ) obtained in this way is exactly the bounded lattice
reduct of A. This can be checked mechanically, e.g. using the Universal
Algebra Calculator [24]. In particular, for every element c ∈ A there is a
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bounded lattice lattice term tc(y1, . . . , y7) such that

c = tA
c (a,�a,3�a,�3�a,3a,�3a,�3�a).

We can assume w.l.o.g. that

t0 = 0, t1 = 1 and ta = y1, t�a = y2, . . . , t�3�a = y7.

In order to prove that A is the free one-generated positive S4-algebra
with free generator a, it will be enough to show that A enjoys the following
universal property: for every B ∈ PS4 and b ∈ B, there is a unique
homomorphism f : A → B such that f (a) = b. The uniqueness of the
homomorphism f is ensured by the fact that A is generated by a. Then it
only remains to prove its existence. To this end, consider the map f : A→ B
defined by the following rule:

f (c) := tB
c (b,�b,3�b,�3�b,3b,�3b,�3�b).

To prove that f is a homomorphism of bounded lattices, we reason as fol-
lows. Clearly f preserves 0 and 1, since t0 = 0 and t1 = 0. Moreover, the lat-
tice reduct of A is freely-generated by a,�a,3�a,�3�a,3a,�3a,�3�a
w.r.t. to the inequalities in Γ, together with Fact 5.2, implies that f is a
lattice homomorphism as well.

It only remains to prove that f preserves the modal operations. We will
detail only the fact that f preserves �. Consider the following partition θ
of A:

{0}, [�a, a], [�3a,3a], [�3�a, a ∨3�a], {1}.
Observe that if two elements c, d ∈ A belong to the same block of θ, then
�Ac = �Ad. Since f preserves 0 and 1, we have that

f (�0) = f (0) = 0 = �0 and f (�1) = f (1) = 1 = �1.

Then, suppose that c ∈ [�a, a] ∪ [�3a,3a] ∪ [�3�a, a ∨3�a]. We have
that following cases:
1. c ∈ [�3�a, a ∨3�a].
2. c ∈ [�a, a].
3. c ∈ [�3a,3a].
1. Observe that

PS4 � �(x ∨3�x) 6 �x ∨33�x = 3�x.

Together with the monotonicity of �, this implies that

�(x ∨3�x) = ��(x ∨3�x) 6 �3�x.

Finally, from the fact that 3�x 6 x ∨3�x, it follows that �3�x 6 �(x ∨
3�x). We conclude that

PS4 � �(x ∨3�x) ≈ �3�x. (5)

Since c ∈ [�3�a, a ∨3�a] and f is order preserving, we have that:

�3�b = f (�3�a) 6 f (c) 6 f (a ∨3�a) = b ∨3�b.
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Together with (5), this implies that � f (c) = �3�b. Moreover, we have that

f (�c) = f (�3�a) = �3�b.

Hence we conclude that � f (c) = �3�b = f (�c).
Cases 2 and 3 are almost straightforward. For this reason we detail

only case 2. Consider c ∈ [�a, a]. Since f is monotone, we have that
�b = f (�a) 6 f (c) 6 f (a) = b. In particular, this implies that � f (c) = �b.
Moreover, we have that f (�c) = f (�a) = �b. Hence we conclude that
� f (c) = �b = f (�c).

We conclude that f preserves �. A similar argument shows that f
preserves 3 as well. Hence f : A→ B is a homomorphism, as desired. �

It is natural to wonder whether the free two-generated positive S4-algebra
is finite as well. It turns out that this is not the case, as witnessed by a small
modification of the example in [6, Figure 4]:

Lemma 5.3. The free two-generated positive S4-algebra is infinite.

Proof. It will be enough to show that there exists an infinite two-generated
positive S4-algebra. To this end, consider the set of natural numbers ω
equipped with the relation >. Clearly > is a reflexive and transitive relation
on ω. This implies that the structure

A = 〈P(ω),∩,∪,�>,3>, ∅, ω〉

is indeed a positive S4-algebra.
We define recursively a formula ϕn(x, y), for every n ∈ ω, as follows:

ϕ0 := �x and ϕm+1 =

{
�(x ∨ ϕm) if m is odd
�(y ∨ ϕm) if m is even.

Then consider the following elements of A:

c := {2n : n ∈ ω} and d := {2n + 1 : n ∈ ω}.

We have that for every n ∈ ω,

ϕA
n (c, d) = {m ∈ ω : m 6 n}.

Thus if n 6= m, then ϕA
n (c, d) 6= ϕA

m(c, d). Hence the subalgebra B of A,
generated by the two-element set {c, d}, is infinite. �

A variety K is locally finite if its finitely generated members are finite.
Equivalently K is locally finite, when its finitely generated free algebras are
finite.

Corollary 5.4. PS4 is not locally finite.
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0• 0• 0• 0•

Figure 2. One-generated subdirectly irreducible algebras

6. Bottom of the subvariety lattice

In this section we will use the characterization of the free one-generated
positive S4-algebra, to describe the bottom of the lattice of subvarieties of
PS4. To this end, observe that the one-generated subdirectly irreducible
positive S4-algebras coincide with the subdirectly irreducible homomorphic
images of FmPS4(x). Since FmPS4(x) is described in Figure 1, we can find
these algebras by inspection. As a result we obtain that there are exactly
11 one-generated subdirectly irreducible positive S4-algebras, which are
depicted in Figure 2. Reading from left to right, we will denote them
respectively by

C2, D3, Ca
3 , Cb

3 , D4, Ca
4 , Cb

4 , Ca
5 , Cb

5 , Ca
6 and Cb

6 .

The following observation is immediate:

Lemma 6.1. V(C2) is the unique minimal variety of positive S4-algebra. This
variety is term-equivalent to the one of bounded distributive lattices.

Proof. Just observe that C2 embeds into every non-trivial positive S4-algebra,
and that C2 is term-equivalent to the two-element bounded distributive
lattice. �

The next result characterizes the covers of V(C2) in the lattice of subvari-
eties of PS4.

Theorem 6.2. V(D3), V(Ca
3), V(Cb

3) and V(D4) are the unique covers of V(C2)
in the lattice of subvarieties of PS4. Moreover, if K is a subvariety of PS4 such
that V(C2) ( K, then K includes one of these varieties.

Proof. Applying Jónsson’s lemma to the algebras of Figure 2, it is easy to see
that the unique covers of V(C2) generated by a one-generated subdirectly
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irreducible positive S4-algebra are V(D3), V(Ca
3), V(Cb

3) and V(D4). Now,
consider any subvariety K of PS4 such that V(C2) ( K. We claim that the
equational theory in one variable of K differs from the one of C2. Suppose
the contrary towards a contradiction. Then we have that

K � x ≈ �x ≈ 3x.

This implies that K is term-equivalent to the variety of bounded distributive
lattices. Keeping this in mind, it is easy to see that K = V(C2), which
contradicts the fact that K properly extends V(C2). This establishes the
claim. Hence there is a one-generated subdirectly irreducible algebra A �
C2 such that A ∈ K. Now, we know that A is one of the algebras in Figure
2. Keeping this in mind, it is easy to see that V(A) ∩ {D3, Ca

3 , Cb
3 , D4} 6= ∅.

Thus we conclude that K contains one of the following varieties: V(D3),
V(Ca

3), V(Cb
3) and V(D4). �

As it will become clear later on (Theorem 9.6), the variety V(D4) is the
cornerstone of structural completeness in varieties of positive K4-algebras.
For this reason, we will devote to it some more attention. In particular, we
will prove that V(D4) is the variety of positive S4-algebras axiomatized by
the following equations:

�3x ≈ �x and 3�x = 3x. (6)

The proof will go through a series of lemmas.

Lemma 6.3. Consider A ∈ PS4 which satisfies (6). The operations�,3 : A→ A
are bounded lattice endomorphisms. Moreover, their kernels coincide and are
congruences of A.

Proof. We check this for �. It is clear that � preserve 0, 1 and ∧. Then
consider a, b ∈ A. We have that

�(a ∨ b) = �3(a ∨ b) = �(3a ∨3b) = �(3�a ∨3�b)

= �3(�a ∨�b) = �(�a ∨�b) = �a ∨�b.

Thus we conclude that � preserves ∨ and, therefore, that it is a bounded
lattice endomorphism. A dual argument yields the same result for 3.

Now observe that for every a, b ∈ A we have that if �a = �b, then
3a = 3�a = 3�b = 3b. Thus the kernel of � is included into the kernel
of 3. An analogous argument shows the other inclusion. Then let θ be the
kernel of � and 3. It is clear that θ preserves � and ∧, since it is the kernel
of �. Moreover θ preserves 3 and ∨, since it is the kernel of 3. �

Corollary 6.4. Consider A ∈ PS4 which satisfies (6) and a, b ∈ A. If �a = �b,
then Cg(a, b) coincides with the lattice-congruence generated by the pair 〈a, b〉.

Proof. Let θ be the kernel of �. By Lemma 6.3 we know that θ ∈ Con A. In
particular, this implies that Cg(a, b) ⊆ θ. Let φ be the lattice-congruence
generated by 〈a, b〉. We have to prove that φ = Cg(a, b). It is clear that
φ ⊆ Cg(a, b). In order to check the other inclusion, it will be enough to
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show that φ preserves the modal operations. To this end consider 〈c, d〉 ∈ φ.
Since φ ⊆ Cg(a, b) ⊆ θ, we know that �c = �d and 3c = 3d. Thus we
conclude that 〈�c,�d〉 = 〈�c,�c〉 ∈ φ and, analogously, 〈3c,3d〉 ∈ φ. �

Lemma 6.5. Consider A ∈ PS4 subdirectly irreducible with monolith Cg(a, b)
with a < b. If A satisfies (6) then:
1. For every c ∈ A: if b 6 c < 1, then c = 3c.
2. For every c ∈ A: if 0 < c 6 a, then c = �c.

Proof. We prove only point 1. Suppose towards a contradiction that c <
3c. We know that �c = �3c. By Corollary 6.4 we know that Cg(c,3c)
coincides with the lattice-congruence generated by 〈c,3c〉. By (1) this
means that

〈x, y〉 ∈ Cg(c,3c)⇐⇒ (x ∧ c = y ∧ c and x ∨3c = y ∨3c).

But this implies that 〈a, b〉 /∈ Cg(c,3c) and contradicts the fact that Cg(a, b)
is the monolith of A. We conclude that 3c = c. �

In order to prove that V(D4) is axiomatized by (6), we need a last
technical lemma.

Lemma 6.6. Let A ∈ PS4 be subdirectly irreducible satisfying (6), and a ∈ A.
1. If �a < a, then Cg(�a, a) is the monolith of A.
2. If a < 3a, then Cg(a,3a) is the monolith of A.

Proof. Let Cg(b, c) be the monolith of A with b < c. We will prove only
point 1. Consider a ∈ A such that �a < a. Applying several times point 2

of Lemma 6.5, we obtain that

a ∧ b = �(a ∧ b) = �a ∧�b = b ∧�a.

Applying several times point 1 of Lemma 6.5, we obtain that

a ∨ c = 3(a ∨ c) = 3c ∨3a = 3c ∨3�a = 3(c ∨�a) = c ∨�a.

The two displays show that the pair 〈�a, a〉 belongs to the lattice-congruence
generated by 〈b, c〉. In particular, this implies that 〈�a, a〉 ∈ Cg(b, c). Since
a 6= �a and Cg(b, c) is the monolith of A, we conclude that Cg(�a, a) =
Cg(b, c). �

We are finally ready to prove the desired result:

Theorem 6.7. V(D4) is the variety of positive S4-algebras axiomatized by the
equations (6).

Proof. Consider a subdirectly irreducible positive S4-algebra A, which
satisfies (6). Moreover, suppose that A is not isomorphic to C2. Our goal is
to show that A ∼= C4. First observe that for every a ∈ Ar {0, 1}

either (�a 6= a and a = 3a) or (�a = a and a 6= 3a). (7)

To prove this, consider a ∈ Ar {0, 1}. By Corollary 4.3 we know that
either �a < a or a < 3a. We detail the case where �a < a, since the
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other one is similar. We want to prove that a = 3a. Suppose towards a
contradiction that a < 3a. By Corollary 6.4 we know that Cg(�a, a) is the
lattice congruence generated by the pair 〈�a, a〉. In particular, this implies
that 〈a,3a〉 /∈ Cg(�a, a). But this contradicts the fact that Cg(a,3a) is the
monolith of A by point 2 of Lemma 6.6. This establishes (7).

Now consider the equivalence relation, defined through its blocks:

θ := {{0}, {�a : a 6= 0, 1}, {3a : a 6= 0, 1}, {1}}.
From (7) it follows that the blocks of θ are pair-wise disjoint. Moreover, by
(7) we know that every element of A belongs to one of the blocks. Thus θ
is a well defined equivalence relation. We claim that θ is a congruence of
A. The fact that θ preserves the modal operations is easy to prove. We will
sketch the proof of the preservation of �. Consider two different elements
a, b in the same block of θ. We have two cases: either a and b are both fixed
points of � or they are both fixed points of 3. If a and b are fixed points of
�, then we are done. Then consider the case where a and b are fixed points
of 3, i.e.,

a, b ∈ {3c : c 6= 0, 1}.
In particular, this means that a, b 6= 0, 1. Thus we conclude that �a,�b ∈
{�c : c 6= 0, 1}. We conclude that θ preserves �. A similar argument shows
that θ preserves 3.

Hence it only remains to prove that θ preserves the lattice operations.
We detail the proof of the fact that θ preserves ∧. Consider a, b, c, d ∈ A
such that 〈a, b〉, 〈c, d〉 ∈ θ. Looking at the definition of θ it is easy to see
that the only non-trivial cases are the following:
1. a, b, c, d ∈ {�e : e 6= 0, 1}.
2. a, b, c, d ∈ {3e : e 6= 0, 1}.
3. a, b ∈ {�e : e 6= 0, 1} and c, d ∈ {3e : e 6= 0, 1}.
1. Observe that �(a∧ c) = �a∧�c = a∧ c and, similarly, �(b∧ d) = b∧ d.
Therefore, in order to prove that 〈a∧ c, b∧ d〉 ∈ θ, it will be enough to show
that a ∧ c, b ∧ d 6= 0, 1. We already know that a, b, c, d are different from 0
and 1. Thus a ∧ c, b ∧ d 6= 1. Suppose towards a contradiction that either
a ∧ c = 0 or b ∧ d = 0. We assume w.l.o.g. that a ∧ c = 0. Applying the fact
that 3 commutes with ∧ by Lemma 6.3, we obtain that

3a ∧3c = 3(a ∧ c) = 30 = 0.

Keeping in mind that a, c 6= 0, this contradicts the fact that A is well-
connected by Corollary 4.3. Thus we conclude that a∧ c 6= 0 (and b∧ d 6= 0).
This implies that 〈a ∧ c, b ∧ d〉 ∈ θ.

A similar argument establishes case 2. Then we consider case 3. First
observe that a ∧ c is a fixed point of �. Suppose the contrary towards
a contradiction. By Lemma 6.6 we know that Cg(�(a ∧ c), a ∧ c) is the
monolith of A. Moreover, Cg(�(a ∧ c), a ∧ c) is the lattice congruence
generated by the pair 〈�(a ∧ c), a ∧ c〉 by Corollary 6.4. Together with the
fact that a < 3a, this implies using (1) that 〈a,3a〉 /∈ Cg(�(a ∧ c), a ∧ c).
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But this contradicts the fact that Cg(a,3a) is the monolith of A by Lemma
6.6. Thus we conclude that a ∧ c is a fixed point of �. A similar argument
shows that the same holds for b ∧ d. In order to prove that 〈a ∧ c, b ∧ d〉 ∈ θ
it will be enough to show that a ∧ c, b ∧ d 6= 0, 1. We already know that the
elements a, b, c, d are different from 0 and 1. Thus a ∧ c, b ∧ d 6= 1. Suppose
towards a contradiction that a ∧ c = 0 or b ∧ d = 0. Assume w.l.o.g. that
a ∧ c = 0. Keeping in mind that 3 commutes with ∧ by Lemma 6.3, we
obtain that

3a ∧3c = 3(a ∧ c) = 30 = 0.

Together with the fact that a, c 6= 0, this contradicts the fact that A is well-
connected by Corollary 4.3. Hence we conclude that 〈a ∧ c, b ∧ d〉 ∈ θ. This
establishes our claim.

Recall that the four blocks of θ are pair-wise distinct. It is not difficult
to see that A/θ ∼= D4. Therefore, in case θ = IdA, we are done. Suppose
towards a contradiction that θ 6= IdA. By Lemma 6.3 we know that the
kernel φ of � coincides with the kernel of 3 and is a congruence of A.
Since A is subdirectly irreducible and not isomorphic to C2, we know that
either �A or 3A is not the identity relation. This implies that φ 6= IdA. We
will show that θ ∩ φ = IdA, contradicting the fact that the identity relation
is meet-irreducible in Con A. Consider two different elements a, b ∈ A such
that 〈a, b〉 ∈ φ. This means that �a = �b and 3a = 3b. Together with
the fact that a 6= b, this implies that a, b 6= 0, 1. By (7) we have two cases:
either �a = a or a = 3a. We detail the case where �a = a. We have that
b 6= a = �a = �b. By (7) this means that b = 3b. Thus a and b belongs
to two different blocks of θ, that is, 〈a, b〉 /∈ θ. The case where a = 3a is
handled similarly. Hence we obtain that φ ∩ θ = IdA, contradicting the fact
that A is subdirectly irreducible. We conclude that A ∼= D4.

We have shown that C2 and D4 are the unique subdirectly irreducible
members of the variety of positive S4-algebras axiomatized by (6). We
conclude that (6) axiomatizes V(D4). �

7. Some splittings

Let K be a variety. A subdirectly irreducible algebra A ∈ K is a splitting
algebra in K if there is a largest subvariety of K excluding A. In this section
we will prove some basic results on splitting algebras that will be useful in
the sequel. The following lemma is taken from [40] (see also [18]):

Lemma 7.1 (McKenzie). If a congruence distributive variety is generated by its
finite members, then its splitting algebras are finite.

The well-known fact that the variety of K4-algebras is generated by its
finite members, together with the fact that PKA is the class of subreducts
of K4-algebras (Theorem 3.8), implies that PKA is generated by its finite
members. Then its splitting algebras are finite by Lemma 7.1. On the
other hand, we don’t know which finite subdirectly irreducible algebras



22 TOMMASO MORASCHINI

are splitting in PKA. A similar argument shows that splitting algebras
in PS4 are finite. However, not necessarily all finite subdirectly positive
S4-algebras are splitting in PS4.

Lemma 7.2.
1. The largest subvariety of PS4 excluding Ca

3 is axiomatized by 3�3x ≈ 3x.
2. The largest subvariety of PS4 excluding Cb

3 is axiomatized by �3�x ≈ �x.

Proof. We will detail only the proof of 1, since the proof of 2 is similar.
Let K be the subvariety of PS4 axiomatized by 3�3x ≈ 3x. Observe that
Ca

3 /∈ K. Then suppose towards a contradiction that there is a variety W
such that Ca

3 /∈ W and W * K. This means that W 2 3�3x ≈ 3x. Then
there is a one-generated subdirectly irreducible algebra A ∈ W such that
A 2 3�3x ≈ 3x. Taking a look at Figure 2 one sees that either A = Ca

3 or
A = Ca

4 . In both cases Ca
3 ∈ H(A) ⊆ K, which is false. �

We conclude this section by showing that D3 is a splitting algebra in
PKA (and not only in PS4).

Lemma 7.3. D3 is a splitting algebras in PK4 and the largest subvariety of PK4
excluding D3 is axiomatized by 3x ∧�3x 6 x ∨�x ∨3�x.

Proof. It is clear that a variety of positive K4-algebras satisfying 3x ∧
�3x 6 x ∨ �x ∨ 3�x excludes D3. To prove the converse we reason
towards a contradiction. Suppose that there is a variety of K4-algebras
K, which excludes D3 in which the equation 3x ∧�3x 6 x ∨�x ∨3�x
fails. Then there is an algebra A ∈ K and a ∈ A such that 3a ∧�3a �
a ∨�a ∨ 3�a. Consider the embedding κ : A → M(A) defined in the
proof of Theorem 3.8. Let θ be the congruence of M(A) generated by
〈�κ(a), 0〉 and 〈3κ(a), 1〉.

We claim that 〈κ(a), 1〉 ∈ θ. Suppose the contrary towards a contradiction.
Then observe that also 〈κ(a), 0〉 /∈ θ, since

3κ(a) ≡θ 1 6≡θ 0 = 30.

Then let φ := {〈b, c〉 ∈ A2 : 〈κ(b), κ(c)〉 ∈ θ}. We have that the subalgebra
of A/φ generated by a/φ is isomorphic to D3. But this contradicts the fact
that K excludes D3, thus establishing the claim.

Our claim, together with (2) implies that

(�κ(a)↔ 0)∧�(�κ(a)↔ 0)∧ (3κ(a)↔ 1)∧�(3κ(a)↔ 1) ⊆ κ(a)↔ 1.

It is easy to see that this can be reduced to the following expression:

¬�κ(a) ∩ ¬3�κ(a) ∩3κ(a) ∩�3κ(a) ⊆ κ(a). (8)

Recall that 3a ∧�3a � a ∨�a ∨3�a and, therefore, that

3κ(a) ∩�3κ(a) * κ(a) ∪�κ(a) ∪3�κ(a).

By the Prime Filter Theorem, there is an ultrafilter F ∈ Pr(M(A)) such that
3κ(a) ∩�3κ(a) ∈ F and κ(a),�κ(a),3�κ(a) /∈ F. Since F is an ultrafilter,
this contradicts (8). �
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8. Varieties of height 6 4

In this section we characterize all varieties of positive S4-algebras that
have height 6 4 in the lattice of subvarieties of PS4. We begin by finding
the covers of V(D3), V(Ca

3), V(Cb
3) and V(D4) in the lattice of subvarieties

of PS4.

Lemma 8.1. V(D3, D4), V(Ca
3 , D4) and V(Cb

3 , D4) are the unique covers of
V(D4) in the lattice of subvarieties of PS4. Moreover, every variety K of positive
S4-algebras such that V(D4) ( K contains one of these three covers.

Proof. By Jónsson’s lemma we obtain thatV(D3, D4), V(Ca
3 , D4) andV(Cb

3 , D4)
are covers of V(D4). Suppose towards a contradiction that there is a variety
K of positive S4-algebras such that V(D4) ( K, which does not contain
any of the varieties V(D3, D4), V(Ca

3 , D4) and V(Cb
3 , D4). Then clearly

D3, Ca
3 , Cb

3 /∈ K. By Lemmas 7.2 and 7.3 we know that K satisfies the
following equations:

3�3x ≈ 3x (9)
�3�x ≈ �x (10)

3x ∧�3x 6 x ∨�x ∨3�x (11)

Observe that in PS4 the inequality (11) can be simplified as follows:

�3x 6 x ∨3�x. (12)

It is easy to see that PS4 � �(x ∨3�x) ≈ �3�x. Together with (12), this
implies that

K � �3x ≈ �(�3x) 6 �(x ∨3�x) ≈ �3�x.

Together with (10) this implies that K � �3x 6 �x. Since PS4 � �x 6
�3x, we conclude that K � �3x ≈ �x. A similar argument shows that
K � 3�x ≈ 3x. Hence K satisfies the equations (6). By Theorem 6.7 we
conclude that K ⊆ V(D4). This contradicts the fact that V(D4) ( K. �

In order to describe the covers of V(D3), V(Ca
3) and V(Cb

3) we need to
introduce the new positive S4-algebras depicted in Figure 3. Reading from
left to right, we denote them by A4, Da

5, Db
5 and B4. The key observation to

understand the covers of V(D3) is the following:

Lemma 8.2. Let K be a variety of positive S4-algebras, whose equational theory
in one variable coincides with the one of V(D3). If A ∈ Ksi r {C2, D3}, then

S(A) ∩ {A4, B4} 6= ∅.

Proof. Consider A ∈ Ksi r {C2, D3}. Observe that

�a = 0 and 3a = 1 for every a ∈ Ar {0, 1}. (13)

To prove this consider a ∈ Ar {0, 1}. Observe that D3 � �x ≈ 3�x. Since
K and D3 have the same equational theory in one variable, we conclude that
�a is a fixed point of 3. Thus �a is a fixed point of both modal operations.



24 TOMMASO MORASCHINI
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Figure 3. Some subdirectly irreducible positive S4-algebras

By Corollary 4.3 we conclude that �a ∈ {0, 1}. Since a < 1, we conclude
that �a = 0. A similar argument shows that 3a = 1. This establishes (13).

We have three cases: either 1 is not join-prime, or 0 is not meet-prime or
none of the previous ones. First we consider the case where 1 is not join-
prime. Then there are a, b < 1 such that a ∨ b = 1. From (13) it follows that
the elements {0, a∧ b, a, b, 1} form the universe of a subalgebra B of A such
that B ∼= A4 or B ∼= Da

5. Observe that in both cases S(B) ∩ {A4, B4} 6= ∅.
The case where 0 is not meet-prime is handled similarly, showing that
either A5 ∈ S(A) or Db

5 ∈ S(A).
It only remains to consider the case where 0 is meet-prime and 1 is

join-prime. Together with the fact that A is different from C2 and D3, this
implies that it contains a four-element chain 0 < a < b < 1. But this is the
universe of a subalgebra of A isomorphic to B4. Hence we conclude that
B4 ∈ S(A) as desired. �

As a consequence of the above result we obtain a characterization of the
covers of V(D3).

Corollary 8.3. V(D4, D3), V(Ca
3 , D3), V(Cb

3 , D3), V(A4), V(B4) are the unique
covers of V(D3) in the lattice of subvarieties of PS4.

Proof. From Jónsson’s lemma it follows that the varieties listed in the
statement are covers of V(D3). Consider a subvariety K that covers V(D3)
in the lattice of subvarieties of PS4. We have two cases: either the equational
theory in one variable of K is the same as the one of V(D3) or not. First
consider the case where it is the same. Since K covers V(D3) there is
A ∈ Ksi r {C2, D3}. By Lemma 8.2 we obtain that K∩ {A4, B4} 6= ∅. Since
V(A4) and V(B4) are covers of V(D3), we conclude that either K = V(A4)
or K = V(B4). Then consider the case where the equational theory of K in
one variable is different from the one of V(D3). This means that K contains
a one-generated subdirectly irreducible algebra A different from C2 and
D3. Together with the fact that K is a cover of V(D3), this implies that
K = V(A, D3). Now, we know that A is one of the algebras depicted in
Figure 2. It is easy to see that the unique algebras A in Figure 2 such that
V(A, D3) is a cover of V(D3) are D4, Ca

3 and Cb
3 . �
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It only remains to characterize the covers of V(Ca
4) and V(Cb

4). Since the
algebras Ca

4 and Cb
4 are symmetric, we will detail the technical work only

for V(Ca
4), since the other one is completely analogous.

Lemma 8.4. V(Ca
3) is axiomatized w.r.t. PS4 by the equational theory of Ca

3 in
one variable.

Proof. Let K be a variety of positive S4-algebra, whose equational theory
in one variable coincides with the one of Ca

3 . Our goal is to prove that
K = V(Ca

3). First observe that K properly extends V(C2), since Ca
3 2 x ≈ �x.

Then there is A ∈ Ksi r {C2}.
We will prove that any such A is isomorphic to Ca

3 . First observe that for
every a ∈ A,

�a = 0 and 3a = a for every a ∈ Ar {0, 1}. (14)

To prove this, consider a ∈ Ar {0, 1}. Observe that Ca
3 � 3x ≈ x,3�x ≈

�x. Together with the fact that the equational theory of K in one variable
is the same as the one of V(Ca

3), this implies that 3a = a and that �a is a
fixed point of both modal operations. From Corollary 4.3 it follows that
�a ∈ {0, 1}. Together with the fact that a < 1, this implies that �a = 0.
This establishes (14).

We have two cases: either 1 is join-prime or not. If 1 is not join-prime,
then there are a, b < 1 such that a ∨ b = 1. Together with (14), this implies
that

1 = �(a ∨ b) 6 �a ∨3b = 0∨ b = b
which contradicts the fact that b < 1. Hence we conclude that 1 is join-
prime.

Then consider a < b such that Cg(a, b) is the monolith of A. We have that
b < 1. To prove this, observe that if b = 1, then 〈0, 1〉 = 〈�a,�b〉 ∈ Cg(a, b).
This means that A is simple. Lemma 4.5, together with the fact that
A � 3x ≈ x, implies that A = {0, 1}. But this implies that A = C2, which
is false by assumption. This establishes b < 1. Now, observe that, since
1 is join-prime, Ar {1} form the universe of a sublattice L of 〈A,∧,∨〉.
We know that L contains at least the two elements a < b. We claim that
L = {a, b}. Suppose the contrary towards a contradiction. Then L is a
lattice of more than three elements. In particular, this implies that there
is a congruence θ of L different from the identity relation and such that
〈a, b〉 /∈ θ. Consider the equivalence relation φ on A whose blocks are the
following:

{1} and c/θ for every c ∈ L.
The fact that 1 is join-prime and (14) imply that φ is congruence of A.
Moreover, φ is different from the identity relation and 〈a, b〉 /∈ φ. This
contradicts the fact that Cg(a, b) is the monolith of A, thus establishing
the claim. Hence A = L ∪ {1} = {a, b, 1}. Hence A is the three-element
chain, whose modal operations are determined by (14). We conclude that
A ∼= Ca

3 . �
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As a consequence of the above result we obtain a characterization of the
covers of V(Ca

3) and V(Cb
3).

Corollary 8.5.
1. V(Cb

3 , Ca
3), V(D3, Ca

3), V(D4, Ca
3) and V(Ca

4) are the unique covers of V(Ca
3)

in the lattice of subvarieties of PS4.
2. V(Ca

3 , Cb
3), V(D3, Cb

3), V(D4, Cb
3) and V(Cb

4) are the unique covers of V(Cb
3)

in the lattice of subvarieties of PS4.

Proof. We detail the proof of 1, since the proof of 2 is analogous. From
Jónsson’s lemma it follows that the varieties listed in the statement are
covers of V(Ca

3). Consider a subvariety K that covers V(Ca
3) in the lattice of

subvarieties of PS4. By Lemma 8.4 we know that the equational theory of
K in one variable differs from the one of V(Ca

3). This means that K contains
a one-generated subdirectly irreducible algebra A different from C2 and
Ca

3 . Together with the fact that K is a cover of V(Ca
3), this implies that

K = V(A, Ca
3). Now, we know that A is one of the algebras depicted in

Figure 2. It is easy to see that the unique algebras A in Figure 2 such that
V(A, D3) is a cover of V(Ca

3) are D4, D3, Cb
3 and Ca

4 . �

Figure 4 describes pictorially the bottom part of the lattice of varieties of
positive S4-algebras. More precisely, we have the following:

Theorem 8.6. Figure 4 represents all varieties of positive S4-algebras, which have
height 6 4 in the lattice of subvarieties of PS4.

Proof. This is a consequence of Theorem 6.2, Lemmas 6.1 and 8.1, and
Corollaries 8.3 and 8.5. �

9. Structural completeness

We conclude this study of varieties of positive modal algebras with some
application to structural completeness. To this end, some observations are
in order. In [57] Rybakov provided a full characterization of HSC varieties
of K4-algebras. It turns out that they are all finitely axiomatizable and,
therefore, that there are only countably many of them. Moreover, he
showed that the map that associates to an intermediate logic its biggest
modal companion preserves HSC [38, 57]. Keeping in mind that every
variety of Gödel algebras is HSC [21], this implies that there are infinitely
many HSC varieties of S4-algebras.4 These considerations show that there
are infinitely many (but not uncountably many) HSC varieties of S4 or,
equivalently, K4-algebras.

It is interesting to compare this situation with the one occurring in the
setting of positive K4-algebras, where we will show that there are only three
non-trivial SC varieties (Theorem 9.7), that is SC almost never occur. Our
first goal will be to prove that, in the study of SC in positive K4-algebras,

4Gödel algebra are simply the Heyting algebras, which are subdirect products of chains.
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we can restrict harmlessly to positive S4-algebras (Corollary 9.3). To this
end, we will rely on the following observation:

Lemma 9.1. V(B2) is the subvariety of PMA axiomatized by �x ≈ 1 and
3x ≈ 0.

Proof. It is clear that the equations �x ≈ 1 and 3x ≈ 0 holds in B2 and,
therefore, in V(B2). Conversely, let A be a positive modal algebra in which
these equations holds. Then consider any pair of different elements a, b ∈ A.
We can assume w.l.o.g. that a � b. By the Prime Filter Theorem, there is
F ∈ Pr(A) such that a ∈ F and b /∈ F. Consider the map f : A → B2
that sends to 1 ∈ B2 exactly the elements which belong to F. Clearly f
is a homomorphism of bounded lattices. Moreover, since the equations
�x ≈ 1 and 3x ≈ 0 hold in A, we conclude that f preserves also the modal
operations. Thus every pair of different elements of A is separated by a
homomorphism onto B2. This means that A ∈ P

sd
(B2) and, therefore, that

A ∈ V(B2). �

The next result highlights the importance of the algebra B2 for structural
completeness in positive modal algebras.

Theorem 9.2. Let K be a SC variety of positive modal algebras. Either K = V(B2)
or there are n, m > 1 such that

K � �x ∧ · · · ∧�nx 6 x and K � x 6 3x ∨ · · · ∨3mx.

Proof. Let K be a SC variety of positive modal algebras. If K is trivial, then
we are done. Then we can assume that K is non-trivial. By Lemma 2.1
we know that the free 0-generated algebra A over K is simple. We claim
that either A = B2 or A = C2. To prove this, assume that A 6= B2. Then
suppose towards a contradiction that A 6= C2. We have that either 0 < �0
or 31 < 1. We detail the case where 0 < �0. Observe that if �0 = 1, then

31 = 31∧�0 6 3(0∧ 1) = 30 = 0.

But this implies that A = B2, which is false. Thus we have that 0 < �0 < 1.
Consider the embedding κ : A→M(A) described in Theorem 3.8. Then let
F be the filter ofM(A) generated by κ(�0). Observe that for every b ∈ F,
we have that�0 6 �b by the monotonicity of�. Thus we conclude that F ∈
Op(M(A)). Consider the congruence φ := {〈b, c〉 ∈ A2 : 〈κ(b), κ(c)〉 ∈ θF}
of A. We have that

〈0,�0〉 /∈ φ and 〈1,�0〉 ∈ φ.

Thus we conclude that φ is different both from the identity and from the
total relation, contradicting the fact that A is simple. The case where
31 < 1 is handled similarly, with the only difference that one relies on the
correspondence between the congruences ofM(A) and its ideals closed
under 3. This establishes our claim.

Now, consider the case where A = B2. Clearly in K the equations �x ≈ 1
and 3x ≈ 0 hold. By Lemma 9.1 we conclude that K = V(B2). Then



28 TOMMASO MORASCHINI

consider the case where A 6= B2. From the claim it follows that A = C2.
Suppose towards a contradiction that either there is no n > 1 such that K �
�x ∧ · · · ∧�nx 6 x or there is no n > 1 such that K � x 6 3x ∨ · · · ∨3nx.
We will detail only the first case, since the second one is analogous.

Consider the free 1-generated algebra FmK(x) over K. Let κ : FmK(x)→
M(FmK(x)) be the embedding defined in the proof of Theorem 3.8. Con-
sider the set

F := {a ∈ M(FmK(x)) : κ(J�x ∧ · · · ∧�nxK) 6 a for some n > 1}.

It is easy to see that F is a filter of M(FmK(x)). Moreover, consider an
arbitrary a ∈ F. Then there is n > 1 such that κ(J�x ∧ · · · ∧�nxK) 6 a. We
have that:

κ(J�1x ∧ · · · ∧�n+1xK) 6 κ(J�2x ∧ · · · ∧�n+1xK)
= κ(�J�x ∧ · · · ∧�nxK)
= �κ(J�x ∧ · · · ∧�nxK)
6 �a.

We conclude that �a ∈ F. This shows that F is indeed an open filter.
Then let φ := {〈b, c〉 ∈ FmK(x)2 : 〈κ(b), κ(c)〉 ∈ θF}. Since κ(JxK) /∈ F and
κ(J�xK) ∈ F, we have that

�(JxK/φ) = J1K/φ and JxK/φ < J1K/φ.

By Birkhoff’s Subdirect Representation Theorem, there is an onto homo-
morphism f : FmK(x)/φ → B where B is subdirectly irreducible and
f (JxK/φ) < f (J1K/φ). By condition 3 of Theorem 1.1, we know that
B ∈ SP

u
(FmK(ω)). This means that there is an ultrapower of FmK(ω) in

which the following sentence holds:

∃x(x < 1 and �x ≈ 1).

By Łos’s Theorem [9, Theorem V.2.9], the above sentence holds in FmK(ω).
Thus there is a term t(x1, . . . , xn) such that

K � �t(x1, . . . , xn) ≈ 1 and K 2 t(x1, . . . , xn) ≈ 1. (15)

Then there is an algebra C ∈ K and a1, . . . , an ∈ C such that tC(a1, . . . , an) <
1. Observe that all the basic operations of C are monotone. Thus an easy
induction on the construction of t shows that

tC(0, . . . , 0) 6 tC(a1, . . . , an) < 1.

Now, observe that B2 is a two-element subalgebra of C. Hence we conclude
that tC(0, . . . , 0) = 0. In particular, this implies that �CtC(0, . . . , 0) =
�C0 = 0. But this contradicts (15). �

Corollary 9.3. Let K be a SC variety of positive K4-algebras. Either K = V(B2)
or K ⊆ PS4.
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Proof. Suppose that K 6= V(B2). By Theorem 9.2 there are n, m > 1 such
that

K � �x ∧ · · · ∧�nx 6 x and K � x 6 3x ∨ · · · ∨3mx.

Since K ⊆ PK4, it satisfy �x ∧ · · · ∧�nx ≈ �x and 3x ∨ · · · ∨3mx ≈ 3x.
Hence we conclude that the equations �x 6 x 6 3x hold in K. �

In the light of Corollary 9.3, the only difficult part in understanding
structural completeness in positive K4-algebras consists in characterizing the
structurally complete varieties of S4-algebras. We begin by proving some
negative results.

Lemma 9.4. Every ASC variety of positive S4-algebras excludes Ca
3 and Cb

3 .

Proof. Suppose towards a contradiction that there is an ASC variety K ⊆
PS4 that contains either Ca

3 or Cb
3 . We detail the case where Cb

3 ∈ K, since
the other one is similar. By condition 1 of Theorem 1.1, we know that
Cb

3 × C2 ∈ Q(FmK(ω)). Observe that the congruence lattice of Cb
3 × C2

has exactly four elements, namely the identity, the total relation and the
two congruences corresponding to the projections associated with the
product. In particular, this implies that either Cb

3 ∈ Q(FmK(ω)) or Cb
3 ×

C2 is subdirectly irreducible relative to Q(FmK(ω)). Recall that Cb
3 is

subdirectly irreducible in the absolute sense. Thus we conclude that

either Cb
3 ∈ SPu

(FmK(ω)) or Cb
3 × C2 ∈ SPu

(FmK(ω)).

Consider the case where Cb
3 ∈ SPu

(FmK(ω)). This means that Cb
3 embeds

into an ultrapower of FmK(ω), where the following first-order sentence
holds:

∃x(0 6= x 6= 1 and �x ≈ x and 3x ≈ 1).

By Łos’s Theorem [9, Theorem V.2.9], the above sentence holds in FmK(ω)
too. In particular, this implies that Cb

3 ∈ S(FmK(ω)). Similarly, one shows
that if Cb

3 ×C2 ∈ SPu
(FmK(ω)), then Cb

3 ×C2 ∈ S(FmK(ω)) as well. Hence
we conclude that

either Cb
3 ∈ S(FmK(ω)) or Cb

3 × C2 ∈ S(FmK(ω)).

In both cases, this implies that there is Jϕ(x1, . . . , xn)K ∈ FmK(ω) such that
JϕK < J1K and 3JϕK = J1K. Now it is easy to prove by induction on terms
that

JψK 6 J3x1 ∨ · · · ∨3xnK
for every JψK ∈ FmK(x1, . . . , xn) such that JψK 6= J1K. In particular, this
implies that JϕK 6 J3x1 ∨ · · · ∨3xnK and, therefore, that

J1K = 3JϕK 6 3J3x1 ∨ · · · ∨3xnK = J3x1 ∨ · · · ∨3xnK.

Thus we conclude that

K � 3x1 ∨ · · · ∨3xn ≈ 1. (16)
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Observe the equation in (16) is not valid in Cb
3 , since 30∨ · · · ∨30 = 0 6= 1.

Thus we obtain a contradiction as desired. �

Another negative result that turns out to be very useful is the following:

Lemma 9.5. Every ASC variety of PS4 excludes D3.

Proof. Suppose the contrary towards a contradiction that K is a ASC variety
of PS4 that contains D3. By condition 1 of Theorem 1.1 we know that
D3 × C2 ∈ Q(FmK(ω)). An argument similar to the one applied in the
proof of Lemma 9.4 shows that there is n ∈ ω such that either D3 or
D3 × C2 embeds into FmK(x1, . . . , xn). In both cases, this implies that there
is JϕK ∈ FmK(x1, . . . , xn) such that JϕK < J1K and 3JϕK = J1K. Again, as in
the proof of Lemma 9.4, this yields that K � 3x ≈ 1 which is false. �

We are now ready to prove the main results of this section:

Theorem 9.6. Let K be a non-trivial variety of positive S4-algebras. The following
conditions are equivalent:

(i) K is actively structurally complete.
(ii) K is structurally complete.

(iii) K is hereditarily structurally complete.
(iv) K = V(C2) or K = V(D4).
(v) K satisfies the equations �3x ≈ �x and 3�x ≈ 3x.

Proof. Clearly (iii)⇒(ii) and (ii)⇒(i). Moreover, the equivalence between
(iv) and (v) is the content of Theorem 6.7.

(i)⇒(iv). By Lemmas 9.4 and 9.5 we know that K excludes Ca
3 , Cb

3 and
D3. Together with Theorem 6.2, this implies that either K = V(C2) or
D4 ∈ K. If K = V(C2), we are done. Then consider the case where D4 ∈ K.
Lemma 8.1, together with the fact that K excludes Ca

3 , Cb
3 and D3, implies

that K = V(D4).
(iv)⇒(iii). By condition 4 of Theorem 1.1 We have to prove that every

subquasi-variety of V(D4) is a variety. Observe that the one-generated free
algebra A in V(D4) is the five-element chain 0 < a < b < c < 1 where
a = �b = �c and c = 3a = 3b. It is easy to see that D4 is a retract of A.
Thus we conclude that D4 is projective in V(D4).

Now consider a non-trivial subquasi-variety K of V(D4). Clearly V(K) =
V(C2) or K = V(D4). First consider the case where K = V(C2). Clearly
C2 ∈ K, since K is non-trivial. Thus we have that

V(C2) = Psd
(C2) ⊆ Psd

(K) = K.

Hence we conclude that K = V(C2). Second consider the case where
K = V(D4). This means that D4 ∈ H(K). Then there is an algebra B ∈ K
such that D4 ∈ H(B). Since D4 is projective in V(D4), we conclude that
D4 ∈ S(B) ⊆ K. Thus we have that

V(D4) = Psd
(C2, D4) ⊆ Psd

(K) = K.

This implies that K = V(D4) and, therefore, we are done. �
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As a consequence we obtain a characterization of structurally complete
varieties of positive K4-algebras:

Theorem 9.7. Let K be a non-trivial variety of positive K4-algebras. The following
conditions are equivalent:

(i) K is structurally complete.
(ii) K is hereditarily structurally complete.

(iii) K = V(B2) or K = V(C2) or K = V(D4).

Proof. Part (ii)⇒(i) is clear. (i)⇒(iii). Suppose that K 6= V(B2). Then
K ⊆ PS4 by Corollary 9.3. Hence we can apply Theorem 9.6 obtaining that
K = V(C2) or K = V(D4).

(iii)⇒(ii). By Theorem 3.5 we know that V(C2) and V(D4) are hered-
itarily structurally complete. Then consider the case where K = V(B2).
Observe that B2 ∈ S(A) for every non-trivial A ∈ V(B2). This implies
that the only subquasi-varieties of V(B2) are the trivial and the total ones.
Hence we conclude that V(B2) is hereditarily structurally complete. �

Problem 1. Are there ASC varieties of positive K4-algebras that are not
SC?

We conclude this section by characterizing passive structural complete-
ness in varieties of positive K4-algebras.

Theorem 9.8. Let K be a non-trivial variety of positive K4-algebras. The following
conditions are equivalent:

(i) K is passively structurally complete.
(ii) Either K = V(B2) or (FmK(0) = C2 and C2 is the unique simple member

of K).
(iii) Either K = V(B2) or (FmK(0) = C2 and K excludes D3).
(iv) Either K = V(B2) or

K � 31 ≈ 1,�0 ≈ 0,3x ∧�3x 6 x ∨�x ∨3�x.

Proof. (i)⇒(iii). The same argument described in the proof of Theorem
9.2 shows that FmK(0) is either B2 or C2. If FmK(0) = B2, then clearly
K � �x ≈ 1,3x ≈ 0. By Lemma 9.1 this implies that K = V(B2). Then
consider the case where FmK(0) = C2. We have to prove that K excludes
D3. Suppose the contrary towards a contradiction. Then the following
positive existential sentence holds in D3:

∃x(0 ≈ �x and 3x ≈ 1).

By condition 2 of Theorem 1.1 we conclude that the above sentence holds
in every non-trivial member of K. But this contradicts the fact that C2 ∈ K,
since K is non-trivial.

(iii)⇒(ii). Suppose that K 6= V(B2). Then consider a simple algebra
A ∈ K. By Corollary 4.3 we know that �a = 0 and 3a = 1 for every
a ∈ Ar {0, 1}. This implies that if A has at least three elements, then
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D3 ∈ S(A). From the assumption we conclude that A has only two
elements. In particular, this implies that A ∼= C2.

(ii)⇒(i). We detail the case where K 6= V(B2), since the other one is
analogous (and easier). By condition 2 of Theorem 1.1 it will be enough to
show that if a positive existential sentence Φ holds in a non-trivial member
of K, then Φ holds in every non-trivial member of K. To this end, consider
such a sentence Φ and suppose that it holds in a non-trivial A ∈ K. Since
Φ is a positive existential sentences, it has the form

Φ = ∃x1, . . . , xnΨ

where Ψ is a conjunction of disjunctions of equations in variables x1, . . . , xn.
We know that there are elements a1, . . . , an such that A � Ψ(a1, . . . , an).
Then let B be the subalgebra of A generated by a1, . . . , an. It is clear that Φ
holds in B too. It is well known that every non-trivial finitely generated
algebra of finite type has a simple homomorphic image [34, pp. 153-
154]. Together with the assumptions, this implies that C2 ∈ H(B2). Since
positive existential sentences are preserved under homomorphic images,
we conclude that Φ holds in C2. Since C2 embeds into every non-trivial
member of K, we obtain that Φ holds in every non-trivial member of K as
desired.

The equivalence between (iii) and (iv) follows from Lemma 7.3. �

The next example shows that there are infinitely many varieties of
positive S4-algebras both with and without PSC.

Example 9.9. We begin by proving that there are infinitely many PSC
varieties of positive S4-algebras . For every natural n > 1, consider the
power-set Boolean algebra P({a1, . . . , an}). We equip it with a modal
operator � defined as follows:

�X =

X if X = {a1, . . . , an}
∅ if a1 /∈ X
{a1} otherwise

for every X ⊆ {a1, . . . , an}. It is easy to see that the resulting expansion
An is an S4-algebra. We denote by A−n its positive reduct (with 3 in the
signature). Clearly A−n ∈ PS4. Applying the correspondence between con-
gruences and open filters in S4-algebras to the definition of An, we conclude
that An is subdirectly irreducible. Moreover, the fact that 〈A,∧,∨, 0, 1〉 is a
Boolean lattice implies that the congruences of A−n preserve the set-theoretic
complement operation. Thus the congruences of An and A−n coincide. In
particular, this implies that the identity relation in meet-irreducible in
Con A−n and, therefore, that A−n is subdirectly irreducible.

Consider n < m. We know that A−n is subdirectly irreducible. Thus
we can apply Jonsson’s lemma, that on cardinality grounds yields that
A−m /∈ V(A−n ). Hence we conclude that if n 6= m, then V(A−n ) 6= V(A−m).
Thus there are infinitely many varieties of the form V(A−n ) with n > 1. It
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only remains to prove that these varieties are PSC. By Theorem 9.8 it will
be enough to show that V(A−n ) excludes D3 for every n > 1. By Jónsson’s
lemma, this amounts to proving that D3 /∈ HS(A−n ). Suppose towards a
contradiction that D3 ∈ HS(A−n ), i.e., that there is a subalgebra B of A−n
and a congruence θ ∈ ConB such that D3 ∼= B/θ. Thus B/θ is a three
element chain. Let b/θ be the intermediate element of this chain. We know
that 〈�b, 0〉, 〈3b, 1〉 ∈ θ. Recall that b ⊆ {a1, . . . , an}. Moreover, observe
that ∅ 6= b 6= {a1, . . . , an}, otherwise B/θ would be the trivial algebra. We
have two cases: either a1 ∈ b or a1 /∈ b. First we consider the case where
a1 ∈ b. By definition of A−n we have that

3�b = 3{a1} = {a1, . . . , an} = 1A−n .

But this implies that 〈1, 0〉 = 〈3�b,30〉 ∈ θ, contradicting the fact that
B/θ is non-trivial. Then we consider the case where a1 /∈ b. Again the
definition of A−n implies that

�3b = �{a2, . . . , an} = ∅ = 0A−n .

But this implies that 〈0, 1〉 = 〈�3b,�1〉 ∈ θ, contradicting the fact that
B/θ is non-trivial. Hence we conclude that D3 /∈ HS(A−n ) as desired. This
shows that there are infinitely many PSC varieties of positive S4-algebras.

In order to construct infinitely many varieties of positive S4-algebras,
that are not PSC, we reason as follows. For every n > 2, let An be the
positive S4-algebra whose universe is the 2n-element Boolean lattice and
whose modal operations are defined as in condition (i) of Lemma 4.5. By
Lemma 4.5 we know that each An is simple. Observe that Jonsson’s lemma
implies, on cardinality grounds, that if n < m yields that A−m /∈ V(An).
Thus there are infinitely many varieties of the form V(A−n ) with n > 2.
Moreover, it is clear that D3 ∈ S(An) ⊆ V(An) for every n > 2. By Theorem
9.8 we conclude that the varieties of the form V(An) are not PSC. �

Appendix

Let `K be the local consequence relation [37] associated with the normal
modal logic K. Then let `+K be the restriction of `K to the set of positive
modal formulas. The logic `+K has been studied in [10, 19] under the
name of positive modal logic (for short PML). In particular, in [10] PML was
axiomatized by means of the Gentzen system PML mentioned in the
introduction. The system PML was formulated as a consequence relation
`PML on the following set of sequents:

Seq := {Γ � ϕ : Γ ∪ {ϕ} is a finite set of positive modal formulas}.

The relation between PML and `PML is as follows: for every set of formulas
Γ ∪ {ϕ} we have that

Γ `+K ϕ⇐⇒ there is a finite ∆ ⊆ Γ s.t. ∅ `PML ∆� ϕ.
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The Gentzen system PML enjoys a strong relation with the variety of
positive modal algebras. In order to explain this, we need to introduce
some definition. Given a sequent Γ � ϕ in Seq, where Γ = {γ1, . . . , γn}, we
define

τ(Γ � ϕ) := {γ1 ∧ · · · ∧ γn 6 ϕ}.
Moreover, given an equation ϕ ≈ ψ in the language of positive modal
algebras, we define

ρ(ϕ ≈ ψ) := {ϕ � ψ, ψ � ϕ}.
The maps τ and ρ can be extended to power sets by picking unions. In this
way we obtain two maps

τ : P(Seq)←→ P(Eq) : ρ

where Eq is the set of equations in the language of positive S4-algebras. It
turns out that the consequence relation `PML and the equational conse-
quence �PMA relative to PMA are mutually interpretable in the following
sense [30]. For every Σ ∪ {Γ � ϕ} ⊆ Seq and every ϕ ≈ ψ ∈ Eq we have
that:

Σ `PML Γ � ϕ⇐⇒ τ(Σ) �PMA τ(Γ � ϕ)

ϕ ≈ ψ =||=PMA τρ(ϕ ≈ ψ).

In abstract algebraic logic [22, 15, 23] the relation described above is known
as algebraizability. More precisely, the Gentzen system PML is algebraiz-
able in the sense of [55] (see also [8, 23, 51]) with equivalent algebraic
semantics the variety PMA. This induces a dual isomorphism between the
lattices of varieties of positive modal algebras and axiomatic extensions of
PML, i.e. extensions of PML by means of rules of the form ∅ ` Γ � ϕ.
In particular, the variety of postive K4-algebras correspond to the axiomatic
extension PML4, obtained adding to PML the axioms

∅ ` ρ(�x 6 ��x) and ∅ ` ρ(33x 6 3x).

Observe that the dual isomorphism between varieties of positive modal
algebras and axiomatic extensions of PML preserves and reflects (active,
passive) structural completeness. Thus Theorems 9.7 and 9.8 provide a
characterization of the various kinds of structural completeness in the
axiomatic extensions of PML4.
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