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Abstract. We prove that the problem of determining whether a finite
logical matrix determines an algebraizable logic is complete for EX-
PTIME. The same result holds for the classes of order algebraizable,
weakly algebraizable, equivalential and protoalgebraic logics. Finally, the
same problem for the class of truth-equational logic is shown to be hard
for EXPTIME.

1. Introduction

Abstract algebraic logic is a field that studies uniformly propositional
logics [12, 14, 15, 16]. One of its main achievements is the development of
the so-called Leibniz hierarchy (see Figure 1), which provides a taxonomy
of propositional logics inspired by the idea that logics can be classified
accordingly to the definability of logical equivalence and truth predicates.
The most prominent example of a class of logics belonging to the Leibniz
hierarchy is probably the one of algebraizable logics [8], i.e. logics which are
equivalent to equational consequences relative to classes of algebras in the
sense of [6, 7].

The role of the Leibniz hierarchy in abstract algebraic logic has been
compared [34] to that of the Maltsev hierarchy [18, 27, 36] in universal
algebra, where the latter provides a taxonomy of varieties by means of
properties typically related to the shape of congruence lattices. Recently,
this analogy has been made precise in such a way that the Leibniz hierarchy
can be regarded as a natural extension of the Maltsev hierarchy to arbitrary
propositional logics [24, 25, 26].

In the context of these considerations, the issue of whether it is actually
possible to classify logics in the Leibniz hierarchy seems to deserve special
attention. The goal of this paper is to shed light on this question, comple-
menting previous work both in the setting of the Leibniz [29] and Maltsev
hierarchies [17] (see also [21]).

It is well known that logics can be defined both syntactically, e.g. by
means of Hilbert calculi, and semantically, e.g. by means of (logical) matri-
ces. Accordingly, the problem of classifying logics in the Leibniz hierarchy
can be formulated in two versions: for each level K of the Leibniz hierarchy
of Figure 1 we consider the following problems:
1. Is the logic determined by a given finite Hilbert calculus in K?
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2. Is the logic determined by a given finite matrix in K?
Problem 1 was shown to be undecidable in [29]. On the other hand, Problem
2 turns out to solvable by means of algorithms that run in exponential or
double exponential time (Lemmas 3.1 and 3.2), see also [30]. Thus it makes
sense to ask which is its computational complexity [2, 31].

The main result of this paper shows that Problem 2 is hard for EXPTIME
for every choice of K in Figure 1 (Theorem 5.5). Since the class EXPTIME
is strictly larger than PTIME by the Hierarchy Theorem of Hartmanis and
Stearns [20], this implies that these problems are not tractable.

2. The Leibniz hierarchy

This section contains a concise presentation of the main concepts used in
the paper; for a systematic exposition we refer the reader to [12, 14, 15, 16].
A matrix is a pair 〈A, F〉, where A is an algebra and F ⊆ A. A congruence
θ of A is compatible with F ⊆ A, when F is a union of blocks of θ. The
largest congruence of A compatible with F (which always exists) is denoted
by ΩAF and is called the Leibniz congruence of A w.r.t. F. A matrix 〈A, F〉
is reduced when ΩAF is the identity relation. The reduction of 〈A, F〉 is
the matrix 〈A/ΩAF, F/ΩAF〉. The last matrix is always reduced. Given
a class of matrices K, we denote by K∗ the class of isomorphic copies of
the reductions of members of K, and by S(K) the class of substructures of
members of K.

A logic ` is a substitution invariant closure relation on the set of terms
(constructed from a given countable set of variables) of a fixed algebraic
language. A logic ` is finitary if for every set of formulas Γ ∪ {ϕ},

Γ ` ϕ⇐⇒ ∆ ` ϕ for some finite ∆ ⊆ Γ.

Every class M of matrices determines a logic `M as follows:

Γ `M ϕ⇐⇒ for every evaluation f , if f [Γ] ⊆ F, then f (ϕ) ∈ F.

Observe that a matrix and its reduction determine the same logic. A matrix
〈A, F〉 is a model of a logic ` when `⊆`〈A,F〉. We denote by Mod∗(`) the
class of reduced models of `.

The main classes in the Leibniz hierarchy can de defined as follows. A
logic ` is protoalgebraic if there is a set of formulas ∆(x, y,~z) such that for
every model 〈A, F〉 of ` and every a, b ∈ A we have:

〈a, b〉 ∈ ΩAF ⇐⇒ ∆(a, b,~c) ⊆ F for all ~c ∈ A. (1)

A logic is equivalential if there exists a set of formulas ∆(x, y) without
parameters ~z, which satisfies condition (1).

A logic ` is truth equational if there is a set of equations τ(x) such that
for every 〈A, F〉 ∈ Mod∗(`) we have

F = {a ∈ A : A � τ(a)}. (2)
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Figure 1. The main classes in the Leibniz hierarchy.

Finally, a logic is algebraizable (resp. weakly-algebraizable) when it is equiv-
alential (resp. protoalgebraic) and truth-equational. The Leibniz hierarchy,
as described above, is represented in Figure 1 where arrows stand for the
inclusion relation.

We will rely on the following observations.

Theorem 2.1. Let ` be the logic determined by a finite set of finite matrices M.
1. ` is protoalgebraic if and only if there is a set of formulas ∆(x, y) (in variables

x and y) such that ∅ ` ∆(x, x) and x, ∆(x, y) ` y.
2. ` is equivalential if and only if there is a set of formulas ∆(x, y) satisfying the

conditions of point 1 and such for every basic n-ary operation f

∆(x1, y1) ∪ · · · ∪∆(xn, yn) ` ∆( f (x1, . . . , xn), f (y1, . . . , yn)).

Moreover, in this case ∆ satisfies condition (1) for every model of `.
3. ` is weakly algebraizable (resp. algebraizable) iff it is protoalgebraic (resp.

equivalential) and there is a set of equations τ(x) such that for all 〈B, F〉 ∈
S(M) and b ∈ B:

b ∈ F ⇐⇒ B/ΩBF � τ(b/ΩBF).

Proof. Items 1 and 2 are well-known (see for instance [14]). Thus we
detail only the proof of 3. First we claim that if ` is protoalgebraic, then
Mod∗(`) = P

sd
((S(M))∗). To prove this, observe that ` is finitary logic,

since M is a finite set of finite matrices [14, Theorem 4.4]. In particular, this
implies

Mod∗(`) = (SP
r
(M))∗ = (P

sd
SP

u
(M))∗ = (P

sd
S(M))∗, (3)

where P
r
,P

sd
and P

u
are the class-operators of reduced, subdirect, and ul-

traproducts [14, Theorem 4.7]. Now, it is not hard to see that (P
sd
S(M))∗ ⊆

(P
sd
((S(M))∗))∗ ⊆ Mod∗(`). Hence we obtain

Mod∗(`) = (P
sd
((S(M))∗))∗.

Recall that if ` is protoalgebraic, then Mod∗(`) is closed under P
sd

[14,
Theorem 6.17] (see also [9, 11, 13]). Together with the fact that (S(M))∗ ⊆
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Mod∗(`), this implies that if ` is protoalgebraic, then

Mod∗(`) = (P
sd
((S(M))∗))∗ = P

sd
((S(M))∗),

establishing the claim.
From the claim it follows that if ` is protoalgebraic, then ` is truth-

equational if and only if there is a set of equations τ(x) such that for all
〈B, F〉 ∈ S(M) and b ∈ B:

b ∈ F ⇐⇒ B/ΩBF � τ(b/ΩBF).

This easily implies that condition 3 holds. �

Lemma 2.2. Let ` be the logic determined by a finite set of finite matrices M.
Then ` is truth-equational if and only if there is a set of equations τ(x) such that
for every 〈B, G〉 ∈ Mod∗(`), where B is one-generated, and every 〈A, F〉 ∈ M
we have

G = {b ∈ B : B � τ(b)} and F ⊆ {a ∈ A : A/ΩAF � τ(a/ΩAF)}.
In this case, we can take τ(x) to be the set of equations ε ≈ δ such that

εA/ΩAF(a/ΩAF) = δA/ΩAF(a/ΩAF), for all a ∈ F and 〈A, F〉 ∈ M.

Proof. We claim that if ε(x) ≈ δ(x) is an equation such that εA/ΩAF(a/ΩAF) =
δA/ΩAF(a/ΩAF) for all a ∈ F and 〈A, F〉 ∈ M, then

εB(b) = δB(b) for every 〈B, G〉 ∈ Mod∗(`) and b ∈ G.

To prove this, observe that Mod∗(`) can be seen as a class of first-
order structures in the algebraic language of ` extended with a unary
predicate symbol P(x). More precisely, a matrix 〈B, G〉 ∈ Mod∗(`) can be
regarded as a first-order structure given by the algebra B, equipped with
the interpretation of P(x) given by the set G ⊆ B.

Now, consider a matrix 〈B, G〉 ∈ Mod∗(`), and an equation ε ≈ δ such
that εA/ΩAF(a/ΩAF) = δA/ΩA F(a/ΩAF) for all a ∈ F and 〈A, F〉 ∈ M. We
have

M � ∀x(P(x)→ ε(x) ≈ δ(x)). (4)
Moreover, as in (3), we have

Mod∗(`) = (P
sd
S(M))∗.

Hence 〈B, G〉 can be identified with a matrix of the form 〈C/ΩC H, H/ΩC H〉
for some 〈C, H〉 ∈ P

sd
S(M).

Then consider an arbitrary element c ∈ C such that c/ΩC H ∈ H/ΩC H.
Since the sentence in (4) is preserved by P

sd
and S, it holds in 〈C, H〉 as

well. Together with the fact that c ∈ H, this implies that εC(c) = δC(c).
Hence we conclude that C/ΩC H � ε(c/ΩC H) ≈ δ(c/ΩC H), establishing
the claim.

Now, we move to the proof of the main statement. Indeed, it is enough to
prove the “if” part. To this end, suppose that there is a set of equations τ(x)
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satisfying the assumptions. Then consider an arbitrary matrix 〈B, G〉 ∈
Mod∗(`). In order to prove that ` is truth-equational, it will be enough to
show that

G = {b ∈ B : B � τ(b)}.
From the assumption we know that F ⊆ {a ∈ A : A/ΩAF � τ(a/ΩAF)}
for every 〈A, F〉 ∈ M. Together with the claim, this implies that G ⊆
{b ∈ B : B � τ(b)}. Conversely, consider b ∈ B such that B � τ(b).
Then consider the subalgebra C of B generated by b. As the congruence
(C× C) ∩ΩBG is compatible with G ∩ C, we obtain

(C× C) ∩ΩBG ⊆ ΩC(G ∩ C).

Together with the fact that B � τ(b), this implies

C/ΩC(G ∩ C) � τ(b/ΩC(G ∩ C)). (5)

Now, observe that 〈C/ΩC(G∩C), (G∩C)/ΩC(G∩C)〉 is a reduced model
of `, and that C/ΩC(G ∩ C) is one-generated. Hence we can apply the
assumption to (5), obtaining

b/ΩC(G ∩ C) ∈ (G ∩ C)/ΩC(G ∩ C).

Since ΩC(G ∩ C) is compatible with G ∩ C, we get that b ∈ G ∩ C ⊆ G.
Hence we conclude that

G ⊇ {b ∈ B : B � τ(b)}
and, therefore, that ` is truth equational.

To conclude the proof, suppose that there is a set of equations τ(x)
satisfying the condition in the statement. Moreover, let τ′(x) be the set
of equations ε ≈ δ such that εA/ΩA F(a/ΩAF) = δA/ΩA F(a/ΩAF), for all
a ∈ F and 〈A, F〉 ∈ M. Since F ⊆ {a ∈ A : A/ΩAF � τ(aΩAF)} for all
〈A, F〉 ∈ M, we obtain that τ(x) ⊆ τ′(x). In particular, this implies that for
every 〈B, G〉 ∈ Mod∗(`) such that B is one-generated,

G ⊇ {b ∈ B : B � τ′(b)}.
The reverse inclusion follows from the claim at the beginning of the proof.

�

We will also make use of the following technical lemma:1

Lemma 2.3. Let ` be the logic determined by a reduced matrix 〈A, F〉.
1. If A is trivial, then ` is weakly algebraizable if and only if F = A.
2. If A is non-trivial and all its basic operations are constants, then ` is not weakly

algebraizable.
3. If A is trivial, then ` is truth-equational if and only if F = A.
4. If A is non-trivial and all its basic operations are constants, then ` is truth-

equational if and only if there is a constant a which is interpreted inside F.
1I am indebted to the referee of my [29] for suggesting a simplification in the proof of

Lemma 2.2.
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Proof. 1. Observe that if A is trivial, then ` is either the inconsistent logic, i.e.
the logic whose set of tautologies coincides with the set of all formulas, or
the almost inconsistent logic, i.e. the logic with empty set of tautologies but
such that ϕ ` ψ for all formulas ϕ and ψ. More in detail, ` is inconsistent
when F = A, and it is almost inconsistent when F = ∅. From condition 3

of Theorem 2.1 it follows that the inconsistent logic is weakly algebraizable,
while the almost inconsistent one is not.

2. Suppose that A is non-trivial and that all its basic operations are
constants. Since all operations of A are constants, the Leibniz congruence
of 〈A, F〉 has only two blocks, i.e. F and A r F. Together with the fact that
〈A, F〉 is reduced and that A non-trivial, this implies that A is a two element
algebra, say with universe {0, 1}, and F = {1}. Hence ` is determined by
〈A, {1}〉.

Suppose towards a contradiction that ` is weakly algebraizable. Then
there is a set of formulas ∆(x, y) as in condition 1 of Theorem 2.1. In
particular, this means that

∅ ` ∆(x, x) and x, ∆(x, y) ` y.

Due to the poorness of the language of A, we have that ∆(x, y) can contain
only constants a, b, c . . . and the variables x, y. Now, since ∆(x, x) is a set of
tautologies of ` and ` is determined by 〈A, {1}〉, we have that a /∈ ∆(x, y)
for each constant a which is interpreted to 0. Similarly, as x and y can be
interpreted as 0 and ∆(x, x) is a set of tautologies, we obtain x, y /∈ ∆(x, y).
Then ∆(x, y) is a set of constants that are interpreted to 1. Hence ∆(x, y)
is a set of tautologies of `, since ` is determined by 〈A, {1}〉. This means
that the rule x, ∆(x, y) ` y specializes to x ` y, which is easily seen to fail
in 〈A, {1}〉.

3. Suppose that A is trivial. If F = A, then all reduced models of `
are isomorphic to 〈A, F〉. Hence ` is truth-equational with τ = ∅. Then
suppose that F = ∅. Observe that there cannot be a set of equations τ
whose set of solutions in A is empty. Hence ` is not truth-equational.

4. Suppose that A is non-trivial. As motivated in the proof of condition
2, A is a two element algebra, say with universe {0, 1}, and F = {1}. If no
constant symbol of A is interpreted to 1, then F cannot be defined as in (2).
Hence ` is not truth-equational. On the other hand, if there is a constant a
which is interpreted to 1, then Mod∗(`) is the class of isomorphic copies of
〈A, F〉 and of the matrix 〈B, B〉, where B is the trivial algebra. This means
that ` is truth-equational with τ(x) := {x ≈ a}. �

Recall that if A is an algebra, the free n-generated algebra Tm(x1, . . . , xn)

in the variety generated by A is isomorphic to the subalgebra of A(An)

generated by the projections (see [5] if necessary). Sometimes we tacitly
identify the elements of the free algebra Tm(x1, . . . , xn) (i.e. the equivalence
classes of formulas with variables among x1, . . . , xn that have the same
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interpretation in A) with particular formulas ϕ(x1, . . . , xn) that represent
them.

Lemma 2.4. Let 〈A, F〉 be a finite reduced matrix, and Tm(x), Tm(x, y) respec-
tively the free one-generated and the free two-generated algebras over the variety
generated by A. Consider also the following sets of formulas and equations

∆(x, y) :={ϕ ∈ Tm(x, y) : ϕA(a, a) ∈ F, for all a ∈ A}
τ(x) :={ε ≈ δ : ε, δ ∈ Tm(x) and εA(a) = δA(a), for all a ∈ F}.

The following conditions hold for the logic ` determined by 〈A, F〉.
1. ` is protoalgebraic iff ∆ satisfies the requirement in condition 1 of Theorem 2.1.
2. ` is equivalential iff ∆ satisfies the requirement in condition 2 of Theorem 2.1.
3. ` is weakly algebraizable (resp. algebraizable) iff ` is protoalgebraic (resp.

equivalential) and τ satisfies the requirement in condition 3 of Theorem 2.1.
4. ` is truth-equational iff τ satisfies the requirement in Lemma 2.2.

Proof. 1. We have to prove that ` is protoalgebraic if and only if ∅ ` ∆(x, x)
and x, ∆(x, y) ` y. The “if” part is a consequence of Theorem 2.1(1). To
prove the “only if” part, suppose that ` is protoalgebraic. By condition
1 of Theorem 2.1 there is a set of formulas ∆′(x, y) such that ∅ ` ∆′(x, x)
and x, ∆′(x, y) ` y. Since the logic ` is determined by 〈A, F〉, we can
assume w.l.o.g. that ∆′ ⊆ Tm(x, y). Together with ∅ ` ∆′(x, x) and the
definition of ∆, this implies ∆′ ⊆ ∆. Bearing in mind that x, ∆′(x, y) ` y,
we conclude that x, ∆(x, y) ` y. Finally, the fact that ∅ ` ∆(x, x) is an
immediate consequence of the definition of ∆.

2. The “if” part of the statement is a consequence of Theorem 2.1(2). To
prove the “only if” part, suppose that ` is equivalential. By condition 2 of
Theorem 2.1 there is a set ∆′(x, y) such that

∅ ` ∆′(x, x) x, ∆′(x, y) ` y

∆′(x1, y1) ∪ · · · ∪∆(xn, yn) ` ∆′( f (x1, . . . , xn), f (y1, . . . , yn))

for every basic n-ary operation f . To conclude the proof, it will be enough
to show that the sets ∆(x, y) and ∆′(x, y) are interderivable in `.

As in the proof of 1, we can assume w.l.o.g. that ∆′ ⊆ ∆. Therefore
it only remains to show that ∆′(x, y) ` ϕ for every ϕ ∈ ∆. To this end,
consider a, b ∈ A such that ∆′A(a, b) ⊆ F. By the last part of condition
2 of Theorem 2.1, this implies 〈a, b〉 ∈ ΩAF. Since 〈A, F〉 is reduced,
we conclude that a = b. Together with the definition of ∆, this implies
∆A(a, b) = ∆A(a, a) ⊆ F. Since ` is the logic determined by 〈A, F〉, we
conclude that ∆′(x, y) ` ϕ for all ϕ ∈ ∆(x, y).

4. The “if” part of the statement is a consequence of Lemma 2.2. To prove
the “only if” part, suppose that ` is truth-equational. From the definition
of τ and the fact that 〈A, F〉 is reduced it follows that

F ⊆ {a ∈ A : A � τ(a)} = {a ∈ A : A/ΩAF � τ(a/ΩAF)}.
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Then consider 〈B, G〉 ∈ Mod∗(`) such that B is one-generated. It only
remains to prove that for every b ∈ B,

b ∈ G ⇐⇒ B � τ(b). (6)

To this end, consider a matrix 〈B, G〉 ∈ Mod∗(`) such that B is one-
generated. Moreover, let τ′ be the set of equations ε(x) ≈ δ(x) such that
εA(a) = δA(a) for every a ∈ F. Since ` is truth-equational, we can apply the
last part of the statement of Lemma 2.2 and the fact that 〈A, F〉 is reduced
obtaining that for every b ∈ B,

b ∈ G ⇐⇒ B � τ′(b). (7)

Now, as in (3), B belongs to the variety generated by A. As a consequence,

B � τ(b)⇐⇒ B � τ′(b)

for every b ∈ B. Together with (7), this implies (6) as desired.
3. We detail the case of weakly algebraizable logics only. The “if” part of

the statement is a consequence of Theorem 2.1(3). To prove the “only if”
part, suppose that ` is weakly algebraizable. Clearly, ` is protoalgebraic.
Moreover, since ` is truth-equational, we can apply point 4 yielding that τ
satisfies the conditions in Lemma 2.2. This clearly implies that τ satisfies
the (weaker) requirement in Theorem 2.1(3). �

3. Upper bounds

We begin by establishing some upper bound to the computational com-
plexity of the problem of classifying logics determined by a finite reduced
matrix of finite type into the Leibniz hierarchy of Figure 1. To this end,
let us explain how we represent the inputs of this problem, that is how
we represent finite matrices 〈A, F〉. The finite set A could be represented
by its cardinality, say n (and A can be taken to be {1, . . . , n}). A k-ary
operation can be represented as a k-dimensional array of elements of A, i.e.
a sequence of nk elements of A. Finally, F can be represent by a natural
number m 6 n, indicating that F = {k ∈ ω : 1 6 k 6 m} (observe that
F = ∅, when m = 0).

The next result identifies upper bounds to the complexity of the problem
of determining whether the logic of a finite reduced matrix is algebraizable:

Lemma 3.1. The problem of determining whether the logic of a finite reduced
matrix of finite type is algebraizable (resp. equivalential, protoalgebraic, weakly
algebraizable) is in EXPTIME.

Proof. We detail the proof for the case of weakly algebraizable logics. Con-
sider a finite reduced matrix 〈A, F〉 of finite type, and let ` be the logic it
defines. Moreover, let ∆ and τ be the sets defined in Lemma 2.4. In order to
determine whether ` is weakly algebraizable or not, it is enough to check
whether ∆ and τ satisfy, respectively, the requirement in condition 1 and 3

of Theorem 2.1 (see conditions 1 and 3 of Lemma 2.4 if necessary). This



ON THE COMPLEXITY OF THE LEIBNIZ HIERARCHY 9

task can be done mechanically, since the free algebras Tm(x) and Tm(x, y)
in the variety generated by A are finite and of size at most |AA2 |.

It only remains to show that this test can be carried on in exponential
time. To this end, let us describe it in more detail. The algorithm starts
reading the input 〈A, F〉. If it reads that A is trivial, then it checks whether
F is empty or not and provides an output according to point 1 of Lemma
2.3. If A is non-trivial, then the algorithm starts checking whether A has
a basic operation, which is not a constant. If this is not the case, then the
algorithm establishes that ` is not weakly algebraizable according to point
2 of Lemma 2.3. This process takes time O(n), where n is the length of the
input.

If the algorithm does not have halted yet, then A is non-trivial and has
a basic operation, which is not a constant. In particular, this means that
the length n of the input dominates the cardinality of A. First we need
to construct the sets Tm(x) and Tm(x, y) respectively of all unary and
binary term-functions of A. This task amounts to that of constructing the
one-generated and the two-generated free algebras of the variety generated
by A (which are isomorphic to subalgebras of AA and A(A2), respectively).
Since n dominates the cardinality of A, the time needed in the construction
of Tm(x) and Tm(x, y) can be bounded exponentially in n. Thus the sets ∆
and τ can be constructed in exponential time in n.

By Lemma 2.4(1), ` is protoalgebraic if and only if ∆ satisfies the right-
hand side of condition 1 of Theorem 2.1. Then the algorithm checks if this
is the case or not (which can be done in exponential time). Accordingly, if `
is not protoalgebraic, the algorithm stops and provides a negative answer.

If ` is protoalgebraic, then by Lemma 2.4(3) the logic ` is weakly al-
gebraizable if and only if τ satisfies the requirement in the display of
condition 3 of Theorem 2.1. To this end, we construct all substructures
〈B, G〉 of 〈A, F〉 (which can be done in exponential time). For each such
submatrix 〈B, G〉, the Leibniz congruence ΩBG can be computed in n log n
time.2 Finally, for every 〈B, G〉, checking the requirement in the display of
condition 3 of Theorem 2.1 is an easy task. If this requirement holds, then
the algorithm provides a positive answer, otherwise it provides a negative
one.

A similar argument shows that the problem of determining whether
the logic of a finite reduced matrix of finite type is equivalential (resp.
protoalgebraic, algebraizable) belongs to EXPTIME. �

2This is justified as follows. First observe that the matrix 〈B, G〉 can be transformed
into an automaton 〈B+, G〉, where B+ is the algebra with universe B and whose basic
operations are the unary functions of the form f B(b1, . . . , bn, x, bn+1, . . . , bm) for some~b ∈ B
and some basic operation f of B. Observe that the length of 〈B+, G〉 is essentially the same
of 〈B, G〉, i.e. n. Now, it is known that the task of computing the Leibniz congruence ΩBG
amounts to that of minimizing the number of states of the automaton 〈B+, G〉. Since the
time needed to solve the latter task is bounded above by n log n [23], we are done.
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The next result identifies upper bounds to the complexity of determining
whether the logic of a finite reduced matrix is truth-equational:

Lemma 3.2. The problem of determining whether the logic of a finite reduced
matrix of finite type is truth-equational is in 2-EXPTIME.

Proof. Let 〈A, F〉 be a finite reduced matrix of finite type, and let ` be the
logic it determines. Let also τ be the set of equations in the statement of
Lemma 2.4. In order to determine whether ` is truth-equational or not, it
is enough to check whether τ satisfies the requirement in Lemma 2.2 (see
conditions 4 of Lemma 2.4 if necessary).

We proceed to explain why this task can be done mechanically. First
observe that the free one-generated algebra Tm(x) in the variety generated
by A, and the set τ can be constructed mechanically as in the proof of
Lemma 3.1. Then we construct all sets Γ ⊆ Tm(x) such that 〈Tm(x), Γ〉 is
a model of `. Then, we check whether for every such Γ we have that

Γ/ΩTm(x)Γ = {ϕ/ΩTm(x)Γ ∈ Tm(x)/ΩTm(x)Γ : τ(ϕ) ⊆ ΩTm(x)Γ}. (8)

Observe that the above equality can be checked mechanically, since Tm(x)
is a finite algebra. The test says that ` is truth-equational, if the above
condition holds, and it says that ` is not truth-equational otherwise.

The fact that this test works as expected is guaranteed by the following
argument. As remarked in the proof of Lemma 2.2, we have that

Mod∗(`) = (P
sd
S(〈A, F〉))∗.

In particular, this means that the algebraic reducts of Mod∗(`) belong
to the variety generated by A. This observations has two consequences.
On the one hand, it means that the free one-generated algebra of the
variety generated by the algebraic reducts of Mod∗(`) is indeed Tm(x).
On the other hand, it implies that the reduced models 〈B, G〉 of ` such
that B is one-generated are (up to isomorphism) the ones of the form
〈Tm(x)/ΩTm(x)Γ, Γ/ΩTm(x)Γ〉 where Γ ⊆ Tm(x) is such that 〈Tm(x), Γ〉
is a model of `. Hence our test amounts to checking whether τ satisfies
the requirement in the statement of Lemma 2.2.

It only remains to show that this test can be carried on in double expo-
nential time. To this end, let us describe it in more detail. The algorithm
starts reading the input 〈A, F〉. If it reads that A is trivial, then it checks
whether F is empty or not, and provides an output according to condition
3 of Lemma 2.3. If A is non-trivial, then the algorithm starts checking
whether all a basic operations of A are constants. If this is the case, then the
algorithm checks whether at least one of them is interpreted inside F and
provides an output according to condition 4 of Lemma 2.3. This process
takes time O(n), where n is the length of the input 〈A, F〉.

If the algorithm does not have halted yet, then A is non-trivial and has a
basic operation, which is not a constant. In particular, this means that the
length n of the input dominates the cardinality of A. From now on we just
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apply the algorithm described at the beginning of the proof. First observe
that τ and Tm(x) can be constructed in exponential time in n, as in the
proof of Lemma 3.1.

Then we need to construct all sets Γ ⊆ Tm(x) such that 〈Tm(x), Γ〉 is a
model of `. This computation requires a number of constructions of order

2nn · nn · n 6 22n2+2n+n

since the number of subsets Γ ⊆ Tm(x) is bounded above by 2nn
, and

for each of Γ ⊆ Tm(x) we have to check that every formula ϕ ∈ Tm(x)
(there are at most nn of them) such that Γ ` ϕ belongs to Γ (checking
whether Γ ` ϕ involves at most n assignments of the variable x in A, since
n dominates the cardinality of A). Since all these constructions can be
carried on in polynomial time in the length n of the input, we conclude
that constructing all the sets Γ ⊆ Tm(x) such that 〈Tm(x), Γ〉 is a model
of ` takes at most double exponential time in n.

Let 〈Tm(x), Γ〉 be a model of `. As shown in the proof of Lemma 3.1,
the Leibniz congruence ΩTm(x)Γ can be computed in m log m time in the
length of ΩTm(x)Γ, which is bounded by 2p(n) for some polynomial p(n).
Bearing this in mind, the time needed in the construction of ΩTm(x)Γ is
bounded above by 2q(n) for some polynomial q(n). Finally, for every Γ and
ϕ, checking condition (8) is an easy task. The analysis done so far shows
that the time needed in the whole computation can be bounded above by
22t(n)

for some polynomial t(n). �

A logic is said to be strongly finite when it is determined by a finite set
of finite matrices of finite type.3 The next result provides upper bounds to
the problem of classifying strongly finite logics in the Leibniz hierarchy of
Figure 1.

Corollary 3.3. The problem of determining whether the logic of a finite set of finite
matrices of finite type is algebraizable (resp. equivalential, protoalgebraic, weakly
algebraizable) is in EXPTIME. The analogous problem for truth-equationality is
in 2-EXPTIME.

Proof. The proof is a straightforward adaptation of those of Lemmas 3.1
and 3.2. The only significant difference is that, in this case, the input is a
set of matrices M which are not necessarily reduced. For this reason, we
need to replace the set M with the set of reductions of its members. This
amounts to compute some Leibniz congruences, and can be done efficiently
(as explain in the proof of Lemma 3.1). �

4. Two fundamental constructions

In this section A is a fixed non-trivial algebra with basic operations F ,
and h is a unary function on A. For sake of simplicity, we assume that F

3In some works the assumption of the finiteness of the type is dropped.
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contains no constant symbols. Our goal is to define two algebras A\ and
A[ related to A. The construction of these algebras presents some relation
with the ones introduced in [21] and [17] to prove hardness results related
to the study of type sets in tame congruence theory [22] and to the study
of Maltsev conditions [19, 36].

We begin by the definition of A\. The universe of A\ is given by eight
disjoint copies A1, . . . , A8 of A. Given an element a ∈ A, we will denote by
ai its copy in Ai. In this sense an arbitrary finite set of elements in A\ can
be denoted as {am1

1 , . . . , amn
n } for some a1, . . . , an ∈ A and m1, . . . , mn 6 8.

The basic operations of A\ are the ones in F plus a new ternary operation
♥ and a new unary operation �. Their interpretation is defined as follows.
Given an n-ary operation f ∈ F and am1

1 . . . , amn
n ∈ A\, we set

f (am1
1 . . . , amn

n ) := f A(a1, . . . , an)
5.

Observe that all the operations f A\
with f ∈ F give values in A5. Given

am, bn, ck ∈ A\, we set

♥(am, bn, ck) :=


a1 if am = ck and h(a)5 = bn and m ∈ {1, 3, 4}
a2 if am = ck and h(a)5 = bn and m ∈ {2, 5, 6, 7, 8}
a4 if m, k ∈ {1, 3, 4} and (either am 6= ck or h(a)5 6= bn)
a7 if {m, k} ∩ {2, 5, 6, 7, 8} 6= ∅ and

(either am 6= ck or h(a)5 6= bn).

Given am ∈ A\, we set

�(am) :=


am if m = 1 or m = 2
am−1 if m is even and m > 3
am+1 if m is odd and m > 3.

Then we turn to define the algebra A[. The universe of A[ is given by
two disjoint copies A1, A2 of A plus two fresh elements {0, 1}. The basic
operation of A[ are the ones in F plus a new binary operation +, a new
unary operation �a for every a ∈ A, and a new constant symbol 1. Their
interpretation is defined as follows. The constant 1 denotes the element 1.
Given an n-ary operation f ∈ F and b1, . . . , bn ∈ A[, we set

f (b1, . . . , bn) :=

 f A(a1, . . . , an)2 if bi ∈ {a1
i , a2

i } for all i 6 n
1 if b1 = · · · = bn = 1
0 otherwise.

Moreover, for every a, b ∈ A[ we set

a + b :=


1 either a = b = 1 or

(a = c1 for some c ∈ A and b = h(c)2)
0 otherwise.
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Finally, for every a ∈ A and b ∈ A[ we set

�a(b) :=


b if b ∈ (A1 ∪ A2)r {a1, a2}
a2 if b = a1

a1 if b = a2

0 if b ∈ {0, 1}.

Now, consider the matrices 〈A\, F\〉 and 〈A[, G[〉 where

F\ := A1 ∪ A2 and G[ := A1 ∪ {1}.

Lemma 4.1. The matrices 〈A\, F\〉 and 〈A[, G[〉 are reduced.

Proof. Observe that, to prove that an arbitrary matrix 〈B, H〉 is reduced, it
is enough to show that for every pair of different elements a, b ∈ B there is
a unary polynomial function p(x) such that

either (p(a) ∈ H and p(b) /∈ H) or (p(a) /∈ H and p(b) ∈ H). (9)

To prove that (9) holds for 〈A\, F\〉 we reason as follows. Consider two
distinct elements an, bm ∈ A\. Then consider the unary polynomial function

p(x) := ♥(x, h(a)5, an).

It is clear that p(an) ∈ F\, while p(bm) /∈ F\. Hence 〈A\, F\〉 is reduced.
Then we turn to prove that (9) holds for 〈A[, G[〉 too. To this end,

consider two different a, b ∈ A[. If a ∈ G[ and b /∈ G[, then we are done.
Then suppose that either a, b ∈ G[ or a, b /∈ G[. First consider the case
where a, b /∈ G[. We can assume w.l.o.g. that a = c2 for some c ∈ A. Then
we have that �c(a) = c1 ∈ G[, while �c(b) = b /∈ G[. Then suppose that
a, b ∈ G[. W.l.o.g. we have the following cases:
1. a = 1 and b 6= 1.
2. 1 /∈ {a, b}.

1. Since A is non-trivial, there is c ∈ A such that b 6= c1. Then observe
that �c(a) = 0 /∈ G[, while �c(b) = b ∈ G[.

2. Then observe that a = c1 and b = d1 for some different c, d ∈ A. We
have that �c(a) = c2 /∈ G[, while �c(b) = b ∈ G[. �

Lemma 4.2. There is an algorithm that transform inputs 〈A, h〉 of Gen-Clo1
3 into

matrices 〈A\, F\〉 (resp. 〈A[, G[〉) and runs in polynomial time in the length of
the input.

Proof. We detail the case of 〈A\, F\〉 only. Observe that a typical input of
Gen-Clo1

3 is a pair 〈A, h〉, where A is an algebra without constant symbols.
Therefore it makes sense to transform it into a matrix of the form 〈A\, F\〉.
Now, it is clear that this translation can be given an algorithmic form.
Therefore, it only remains to prove that it runs in polynomial time. The
only non-trivial part is that the length of the output 〈A\, F\〉 should be
bounded by a polynomial in the length n of the input 〈A, h〉. Since h is
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unary, we know that n dominates the cardinality of A. Moreover, A has
at most n basic operations, all of arity at most 3. Thus A\ is an algebra of
cardinality at most 8n, with at most n + 2 basic operations, all of arity at
most 3. Hence the length of A\ is bounded above by 8n + (n + 2) · (8n)3.
Thus the length of 〈A\, F\〉 is bounded by 8n + (n + 2) · (8n)3 + 8n. �

5. Hardness results

In this section we prove that the problem of determining whether the
logic of a finite reduced matrix of finite type belongs to any level of the
Leibniz hierarchy of Figure 1 is hard for EXPTIME. To this end, we will
make use of the following purely algebraic decision problem related to
clones [3, 28]:
• Gen-clo1

3: Given a finite non-trivial algebra A with finitely many basic op-
erations F , whose arities belong to the set {1, 2, 3}, and a unary operation
h on A different from the identity, is h in the clone of A?

It is clear that Gen-clo1
3 is decidable by means of a procedure which runs

in exponential time. Remarkably, this procedure is the best possible [4,
Theorem 3.7]:4

Theorem 5.1. The problem Gen-clo1
3 is complete for EXPTIME.

The proof of the next lemma relies on a series of technical results and
one definition contained in the Appendix.

Lemma 5.2. Let A be a non-trivial algebra without constant symbols, h be a
unary operation on A other than the identity, and ` be the logic determined by the
matrix 〈A\, F\〉. The following conditions are equivalent:

(i) ` is algebraizable.
(ii) ` is weakly algebraizable.

(iii) ` is equivalential.
(iv) ` is protoalgebraic.
(v) h is in the clone of A.

Proof. The implications (i)⇒(ii), (i)⇒(iii), (ii)⇒(iv) and (iii)⇒(iv) are straight-
forward. (v)⇒(i): Let ϕ(x) be a term of A representing h on A. Since h is
not the identity, we have that ϕ(x) 6= x. We consider the same term in the
algebra A\. Then consider the following sets:

τ(x) := {x ≈ �x} and ∆(x, y) := {♥(x, ϕ(x), y)}.
Bearing in mind that ϕ(x) 6= x, it is an easy exercise to check that for every
a, b ∈ A\ we have that

a ∈ F\ ⇐⇒ A\ � τ(a)

a = b⇐⇒ ∆(a, b) ⊆ F\.

4Observe that [4, Theorem 3.7] states that a slightly different problem is complete for
EXPTIME. But the proof given there shows that the same result holds for Gen-clo1

3.
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By condition 3 of Theorem 2.1 we conclude that ` is algebraizable.
(iv)⇒(v): Suppose that ` is protoalgebraic. This means that there is

a set ∆(x, y) satisfying the conditions in point 1 of Theorem 2.1. Since
` is neither inconsistent nor almost-inconsistent, we know that ∆ 6= ∅
and that no variable belongs to ∆. Pick any element a ∈ A. We know
that {a1} ∪ ∆(a1, a1) ⊆ F, since ∅ ` ∆(x, x). Together with the fact that
x, ∆(x, y) ` y and that a3 /∈ F\, this implies that there is ϕ(x, y) ∈ ∆ such
that ϕ(a1, a1) ∈ F\ and ϕ(a1, a3) /∈ F.

Observe that ∅ ` ϕ(x, x). In particular, we have that ϕ(a3, a3) ∈ F\. To-
gether with the definition of A\, this implies that ϕ(x, y) = �m♥(ψ1, ψ2, ψ3)
for some m ∈ ω and formulas ψ1, ψ2 and ψ3. We can assume w.l.o.g. that
m = 0, since �x ` x and x ` �x. The fact that ϕ(x, x) is a tautology of `
implies that

For every b ∈ A\, if cn = ψ1(b, b), then ψ2(b, b) = h(c)5. (10)

Again looking at the definition of A\, this implies that ψ2 = �2k f (ε1, . . . , εn)
for some f ∈ F , formulas ε i and k ∈ ω. In particular, we can assume w.l.o.g.
that k = 0, since A\ � �2k f (ε1, . . . , εn) ≈ f (ε1, . . . , εn). To every formulas ε i
we associate a new formula δi written only with the symbols of F . This
is done as follows: first we delete from ε i all occurrences of �, and then
we replace every occurrence of ♥(χ1, χ2, χ3) by χ1. This concludes the
definition of δi. Observe that for every b, c ∈ A\ there is a ∈ A such that

ε i(b, c), δi(b, c) ∈ {a1, . . . , a8}.

In particular, this implies that for every b, c ∈ A\ we have

f (ε1, . . . , εn)(b, c) = f (δ1, . . . , δn)(b, c).

Thus we can assume w.l.o.g. that ψ2 = f (δ1, . . . , δn).
Now, recall that ϕ(a1, a1) ∈ F, while ϕ(a1, a3) /∈ F. In particular, we have

that ϕ(a1, a1) 6= ϕ(a1, a3). Then we can apply Lemma 6.7, obtaining that
ϕ(a1, a3) ∈ A1 ∪ A3 ∪ A4. Together with Lemmas 6.4 and 6.3 this implies
that

ϕ(bn, bn) ∈ {b1, . . . , b8} for every bn ∈ A\.

Pick bn ∈ A\. In particular, we have that ψ1(bn) = bm for some m 6 8.
Together with condition (10) this implies that

ψ2(bn, bn) = f (δ1, . . . , δn)(bn, bn) = h(b)5.

Recall that f (δ1, . . . , δn) is a formula written only with symbols in F . Hence
we obtain that

f (δ1, . . . , δn)
A(b, b) = h(b)

for every b ∈ A. This means that the term f (δ1, . . . , δn)(x, x) represents h
in A, i.e. h belongs to the clone of A. �
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Let τ be a set of equations in variable x. A class of algebras K is a
τ-algebraic semantics for a logic ` [8, 10, 33] if for every set of formulas
Γ ∪ {ϕ}, we have:

Γ ` ϕ⇐⇒ τ(Γ) �K τ(ϕ)

where �K is the equational consequence relative to K. In what follows we
will make use of the following result [33, Proposition 39]:

Theorem 5.3. Let ` be a logic with a τ-algebraic semantics. Suppose that τ
contains an equation ε ≈ δ such that δ(x) ` x and ∅ ` ε(x). Then ` is
truth-equational by means of δ(x) ≈ ε(x).

Lemma 5.4. Let A be a non-trivial algebra without constant symbols, h be a
unary operation of A, and ` be the logic determined by the matrix 〈A[, G[〉. ` is
truth-equational if and only if h is in the clone of A.

Proof. We begin by the “if” part. Let t(x) be the term that represents h in
A. Then define δ := x + t(x) and ε := 1. Moreover, set τ := {δ(x) ≈ ε(x)}.
Observe that the set of equations τ defines G[ in A[. Thus the class K =

{A[} is a τ-algebraic semantics for `. Moreover, observe that δ(x) ` x and
∅ ` ε(x). Therefore we can apply 5.3 yielding that ` is truth-equational.

Then we turn our attention to the “only if” part. Suppose that ` is
truth-equational. Observe that the matrix 〈A[, G[〉 is reduced by Lemma
4.1. Then we can use the technique described in the proof of Lemma 3.2 to
produce a set of equations τ that satisfies condition (2), namely

τ := {ε(x) ≈ δ(x) : ε(a) = δ(a) for every a ∈ G[}.

Since 〈A[, G[〉 is reduced and 0 ∈ G[, there is an equation ε ≈ δ ∈ τ such
that ε(0) 6= δ(0). Looking at the definition of the basic operations of A[ we
obtain that for every formula γ(x), if x really occurs in γ, then γ(0) = 0.
Then either x does not occur in ε or x does not occur in δ. We assume
w.l.o.g. that x does not occur in ε. This means that ε is a closed term, i.e.
a term of the form t(1, . . . , 1) for some term t(x1, . . . , xn). In particular,
we have that A[ � t(1, . . . , 1) ≈ 1. Together with the definition of τ, this
implies that the equation δ(x) ≈ 1 belongs to τ.

Now, we claim that the symbol �a does not appear in δ(x), for every
a ∈ A. To prove this, we will show by induction on the construction of δ
that if the operation �a appears in δ, then δ(1) = 0. The case where δ is a
variable is satisfied. Then suppose that δ = f (ϕ1, . . . , ϕn) for some f ∈ F
and that �a appears in δ. Then �a appears in some ϕi. By the inductive
hypothesis we have that ϕi(1) = 0. Hence we conclude that

δ(1) = f (ϕ1(a), . . . , ϕi−1(1), 0, ϕi+1(1), . . . , ϕn(1)) = 0.

The case where δ = ϕ+ψ is handled analogously. Finally, consider the case
where δ = �a ϕ. Observe that ϕ(1) ∈ {0, 1}, since {0, 1} is the universe
of a subalgebra of A[. Then �a(ϕ(1)) = 0 as desired. This concludes the
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inductive proof. Now, recall that 1 ∈ G[ and, therefore, that δ(1) = 1.
Hence we conclude that �a does not appear in δ, for every a ∈ A.

We are in the following situation: there is an equation δ ≈ 1 in τ which
satisfies the following requirements:

1. �a does not appear in δ.
2. δ is neither a closed term nor a variable.

The second condition above follows from the fact that δ(0) 6= 1 and that
δ(a) = 1 for all a ∈ A1. Conditions 1 and 2 imply that the principal symbol
of δ must be either f ∈ F or +. If it is f ∈ F , then δ = f (ϕ1, . . . , ϕn) for
some formulas ϕ1, . . . , ϕn. Looking at the definition of f in A[, one sees that
ϕi(a) = 1 for every a ∈ G[. In particular, this means that all the equations
ϕi ≈ 1 belong to τ. Moreover, the fact that ϕi(a) = 1 for all a ∈ A1 implies
that ϕi is not a variable. Finally, there must be at least one formula ψ = ϕi,
which is not a closed term. Then this formula ψ satisfies conditions 1 and 2

and, moreover, the equation ψ ≈ 1 belongs to τ. Then consider the case
where the principal symbol of δ is +, i.e. δ = ϕ + ψ for some terms ϕ
and ψ. Suppose that ϕ is not a variable. The fact that the symbol �a does
not appear in ϕ for every a ∈ A implies that ϕ(a) ∈ A2 ∪ {0, 1} for every
a ∈ A[. Together with the fact that δ(a) = 1 for every a ∈ G[, this implies
that ϕ(a) = 1 = ψ(a) for every a ∈ G[. This means that both the equations
ϕ ≈ 1 and ψ ≈ 1 belong to τ. Suppose that ϕ does not satisfy condition 2.
Since ϕ cannot be a variable (since ϕ(a) = 1 for all a ∈ A1), we conclude
that ϕ is the constant 1. Since δ is not a closed term, this implies that ψ is
not a closed term. Moreover, ψ cannot be a variable (since ϕ(a) = 1 for all
a ∈ A1). Hence we conclude that ψ satisfies condition 2. Thus ψ satisfies
conditions 1 and 2 and, moreover, the equation ψ ≈ 1 belongs to τ. Until
now we have shown that either δ is of the form of x + ψ or we can extract
from it a proper subformula γ which again satisfies conditions 1 and 2,
and the equation γ ≈ 1 belongs to τ. The same argument shows that either
γ is of the form x + ψ or we can extract from it a proper subformula γ′,
which satisfies conditions 1 and 2, and the equation γ′ ≈ 1 belongs to τ.
Iterating this process we obtain a formula x + ψ(x) ≈ 1 which belongs τ
and in which the symbols �a do not occur.

Consider any element a1 ∈ A1. Since a1 ∈ G[, we have that a1 + ψ(a1) =
1. This means that ψ(a1) = h(a)2. In particular, observe that if the symbols
+ or 1 appear in ψ, then we would have that ψ(a1) ∈ {0, 1}, which is not
the case. Thus the symbols +, 1 and �a do not occur in ψ. This means that
ψ is written with symbols among F . Then for every a ∈ A we have that

ψA(a)2 = ψ(a1) = h(a)2.

Hence ψ represents h in A, i.e. h belongs to the clone of A as desired. �

We are now ready to state the main result of the paper:
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Theorem 5.5. Let K be a level in the Leibniz hierarchy of Figure 1. The problem
of determining whether the logic of a finite reduced matrix of finite type belongs to
K is hard for EXPTIME.

Proof. Let K be a level in the Leibniz hierarchy of Figure 1. By Lemmas
5.2 and 5.4 there is a many-one reduction of Gen-Clo1

3 to the problem of
determining whether the logic of a finite reduced matrix of finite type
belongs to K. By Lemma 4.2 this reduction runs in polynomial time.
Together with Theorem 5.1, this implies that the problem of determining
whether the logic of a finite reduced matrix of finite type belongs to K is
hard for EXPTIME. �

Corollary 5.6. Let K be any level in the Leibniz hierarchy of Figure 1 different
from the one of truth-equational logics. The problem of determining whether
the logic of a finite reduced matrix of finite type belongs to K is complete for
EXPTIME.

Proof. This is a combination of Lemma 3.1 and Theorem 5.5. �

Remarkably, the methods developed in this work can be adapted to prove
hardness results for other classes of logics studied in abstract algebraic logic.
To exemplify this phenomenon, recall that a logic ` is order algebraizable
[32, 35] if there are a set ∆(x, y) of formulas and a set τ(x) of inequalities
such that for every 〈A, F〉 ∈ Mod∗(`) the relation 6F

A defined for every
a, b ∈ A as

a 6F
A b⇐⇒ ∆(a, b) ⊆ F

is a partial order, and for every a ∈ A

a ∈ F ⇐⇒ 〈A,6F
A〉 � τ(a).

Corollary 5.7. The problem of determining whether the logic of a finite reduced
matrix of finite type is order algebraizable is complete for EXPTIME.

Sketch of the proof. The class of order algebraizable logics has a syntactic
characterization [35, Theorem 7.1]. Applying an argument similar to the
one described in the proof of Lemma 3.1 to this characterization, it is
possible to show that the problem of determining whether the logic of
a finite reduced matrix of finite type is order algebraizable belongs to
EXPTIME. To prove that this problem is hard for EXPTIME, we reason as
follows. First observe that every order algebraizable logic is is equivalential,
and that every algebraizable logic is order algebraizable. Then we can add
the fact that ` is order algebraizable to the list of equivalent conditions in
the statement of Lemma 5.2. This yields the desired hardness result. �

We conclude with a list of open problems on the decidability and com-
putational complexity of the hierarchies of abstract algebraic logic.

Problem 1. Is the problem of determining whether the logic of a finite
reduced matrix of finite type is truth-equational in EXPTIME? Observe
Theorem 5.5 shows that this problem is hard for EXPTIME.
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Problem 2. Is the problem of determining whether the logic of a finite
reduced matrix of finite type has an algebraic semantics decidable? And if
so, then which is its computational complexity?

Problem 3. The problem of determining whether the logic of a finite re-
duced matrix of finite type is assertional [1] is easily seen to be decidable.
More interestingly, which is its computational complexity? Similar ques-
tions can be risen about other classes of logics in the Leibniz hierarchy.

Problem 4. In this work we focussed on logics determined by arbitrary
finite reduced matrices of finite type. Are the hardness results still true
if we restrict our attention to finite reduced matrices 〈A, F〉 of finite type
such that F is a singleton?

Problem 5. Are there reasonable assumptions (on matrices) under which
the problem of classifying the logic of a finite reduced matrix of finite type
in the Leibniz hierarchy becomes tractable?

Problem 6. Investigate the decidability and complexity of determining
whether the logic of a finite reduced matrix of finite type belongs to a given
level of the Frege hierarchy of abstract algebraic logic.
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6. Appendix

Through this section we assume that A is a fixed non-trivial algebra
without constant symbols, and A\ is the algebra associated with it as in
Section 4. The subformula tree of a formula ϕ of A\ is defined by recursion on
the construction of ϕ as follows. The subformula tree of a variable x is the
one-element tree, whose unique node is labelled by x. Then the subformula
tree of a complex formula ϕ is obtained as follows. Suppose that ϕ =
g(ψ1, . . . , ψn) for some basic n-ary symbol g and formulas ψ1, . . . , ψn. First
we pick the disjoint union of the subformula trees of ψ1, . . . , ψn, and we
relabel the root of the subformula tree of ψi by 〈ψi, i〉. Second we add to
these trees a common root labelled by ϕ.

Definition 6.1. A formula ϕ of A\ has the tree property when every node of
the subformula tree of ϕ, which is labelled by a formula whose principal
symbol belongs to F (plus possibly a natural number), is preceded or equal
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to a point which has a label of the form 〈β, 2〉 whose immediate predecessor
is labelled by ♥(α, β, γ) or 〈♥(α, β, γ), n〉 for some n ∈ ω.

Example 6.2. Since the definition of tree property is quite technical, we pro-
ceed to explain it through some basic examples. For the sake of simplicity,
suppose that F contains only a unary symbol f (x). The formulas

♥(x,� f (x), y) and ♥(�z,♥( f (z), f ( f (x)), y), z)

have the tree property. On the other hand, the formula ♥( f (x), f (x), z)
does not have the tree property. To explain why, observe that its subformula
tree looks as follows:

♥( f (x), f (x), z) •

〈 f (x), 1〉 • • 〈 f (x), 2〉 • 〈z, 3〉

〈x, 1〉 • • 〈x, 1〉
It is not hard to see that the occurrence of 〈 f (x), 1〉 in the lefter branch
makes the tree property fail. �

Lemma 6.3. If ϕ(x1, . . . , xn) has the tree property, then for every bn ∈ A\ there
is m 6 8 such that

ϕ(bn, . . . , bn) = bm.
Moreover, if i ∈ {1, 3, 4}, then ϕ(bi, . . . , bi) ∈ {b1, b3, b4}.

Proof. We reason by induction on the construction of ϕ. If ϕ is a variable,
then the result holds vacuously. Then consider the case where ϕ is a
complex formula. If ϕ = f (ψ1, . . . , ψn) for some f ∈ F , then clearly ϕ
does not have the tree property. Then consider the case where ϕ = �ψ.
Then clearly also ψ has the tree property. Consider bn ∈ A\. By inductive
hypothesis there is m 6 8 such that ψ(bn, . . . , bn) = bm. Together with the
definition of �, this implies that

ϕ(bn, . . . , bn) = �ψ(bn, . . . , bn) = �bm ∈ {b1, . . . , b8}.
Finally, consider the case where ϕ = ♥(ψ1, ψ2, ψ3). Clearly ψ1 and ψ3
must have the tree property. We focus only on ψ1. Consider bn ∈ A\. By
inductive hypothesis there is m 6 8 such that ψ1(bn, . . . , bn) = bm. Together
with the definition of ♥, this implies that

♥(ψ1, ψ2, ψ3)(bn, . . . , bn) ∈ {b1, . . . , b8}.
This concludes the inductive argument.

The last part of the statement (the one starting with Moreover...) is also
proved by a simple induction. �

Lemma 6.4. Let ϕ(x, y) be a formula and a ∈ A. ϕ(a1, a3) ∈ A1 ∪ A3 ∪ A4 if
and only if ϕ has the tree property.
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Proof. The direction from left to right is proved by induction on the con-
struction of ϕ. The case where ϕ is a variable is clear. Then suppose
that ϕ is a complex formula. If ϕ = f (ψ1, . . . , ψn) for some f ∈ F , then
ϕ(a1, a3) belongs to A5, which is disjoint from A1 ∪ A3 ∪ A4. Then sup-
pose that ϕ = �ψ. From �ψ(a1, a3) ∈ A1 ∪ A3 ∪ A4 and the definition
of �, we can infer that ψ(a1, a3) ∈ A1 ∪ A3 ∪ A4. By the inductive hy-
pothesis we obtain that ψ has the tree property. In particular, this is
implies that ϕ has the tree property too. Then consider the case where
ϕ = ♥(ψ1, ψ2, ψ3). From the fact that ϕ(a1, a3) ∈ A1 ∪ A3 ∪ A4, we can infer
that ψ1(a1, a3), ψ3(a1, a3) ∈ A1 ∪ A3 ∪ A4. By the inductive hypothesis, this
means that both ψ1 and ψ3 have the tree property. In particular, this implies
that ♥(ψ1, ψ2, ψ3) has the tree property too.

The direction from right to left also follows from a simple induction. �

Lemma 6.5. For every formula ψ(x,~y), ~c ∈ A\, and a ∈ A, there is b ∈ A and
n, m 6 8 such that ψ(a1,~c) = bn and ψ(a3,~c) = bm.

Proof. This follows from a simple induction on the construction of ψ, using
the definition of the basic operations of A\. �

As a consequence we obtain the following:

Corollary 6.6. Let f ∈ F be n-ary and ϕ1(x,~y), . . . , ϕn(x,~y) be terms of A\.
For every a ∈ A and~c ∈ A\ we have

f (ϕ1, . . . , ϕn)(a1,~c) = f (ϕ1, . . . , ϕn)(a3,~c).

Proof. By Lemma 6.5 there are b1, . . . , bn ∈ A and k1, . . . , kn, m1, . . . , mn 6 8
such that

ϕi(a1,~c) = bmi
i and ϕi(a3,~c) = bki

i .
This implies that

f (ϕ1, . . . , ϕn)(a1,~c) = f (bm1
1 , . . . , bmn

n )

= f A(b1, . . . , bn)
5

= f (bk1
1 , . . . , bkn

n )

= f (ϕ1, . . . , ϕn)(a3,~c)

concluding the proof. �

Lemma 6.7. Let ϕ(x, y) be a formula and a ∈ A. If ϕ(a1, a3) 6= ϕ(a1, a1), then
ϕ(a1, a3) ∈ A1 ∪ A3 ∪ A4.

Proof. We reason by induction on the construction of ϕ. The case where
it is a variable is satisfied. Then suppose that ϕ is a complex formula. If
ϕ = f (ψ1, . . . , ψn) for some f ∈ F , then by Corollary 6.6 we obtain that
ϕ(a1, a3) = ϕ(a1, a1), which is false. Then suppose that ϕ = �ψ. From
�ψ(a1, a3) 6= ψ(a1, a1) it follows that ψ(a1, a3) 6= ψ(a1, a1). By inductive
hypothesis we obtain that ψ(a1, a3) ∈ A1 ∪ A3 ∪ A4. Together with the
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definition of �, this implies that ϕ(a1, a3) ∈ A1 ∪ A3 ∪ A4 as well. It only
remains to consider the case where ϕ = ♥(ψ1, ψ2, ψ3). From the fact that
ϕ(a1, a3) 6= ϕ(a1, a1) it follows that one of the following conditions holds:
1. ψ1(a1, a3) 6= ψ1(a1, a1).
2. ψ2(a1, a3) 6= ψ2(a1, a1) and 1 does not hold.
3. ψ3(a1, a3) 6= ψ3(a1, a1) and neither 1 not 2 hold.
We consider these cases separately:

1. By the inductive hypothesis we have that ψ1(a1, a3) ∈ A1 ∪ A3 ∪ A4.
If ψ3(a1, a3) ∈ A1 ∪ A3 ∪ A4, then by definition of ♥ we conclude that
ϕ(a1, a3) ∈ A1 ∪ A3 ∪ A4 and we are done. Then suppose towards a
contradiction that ψ3(a1, a3) /∈ A1 ∪ A3 ∪ A4. By Lemma 6.4 we know that
ψ3 does not have the tree property. Together with the definition o A\, this
implies that ψ3(a1, a1) /∈ A1 ∪ A3 ∪ A4 too. Moreover, by Lemma 6.4 we
know that ψ1 has the tree property. Together with Lemma 6.3 this implies
that

ψ1(a1, a1), ψ1(a1, a3) ∈ {a1, a3, a4}.
Thus we obtain that

♥(ψ1, ψ2, ψ3)(a1, a3) = a7 = ♥(ψ1, ψ2, ψ3)(a1, a1)

contradicting the fact that ϕ(a1, a3) 6= ϕ(a1, a1).
2. We will show that this case leads to a contradiction, that is to say that

it never happens. If ψ2(a1, a3) 6= ψ2(a1, a1), then by inductive hypothesis
this means that ψ2(a1, a3) ∈ A1 ∪ A3 ∪ A4. By Lemma 6.4 we know that ψ2
has the tree property and by Lemma 6.3 that ψ2(a1, a1) ∈ A1 ∪ A3 ∪ A4 as
well. Consider b ∈ A and n 6 8 such that ψ1(a1, a1) = ψ1(a1, c3) = bn. By
definition of ♥ we have that

ϕ(a1, a1) =

{
b4 if ψ1(a1, a1), ψ3(a1, a1) ∈ A1 ∪ A3 ∪ A4
b7 otherwise.

ϕ(a1, a3) =

{
b4 if ψ1(a1, a3), ψ3(a1, a3) ∈ A1 ∪ A3 ∪ A4
b7 otherwise.

Since ψ1(a1, a1) = ψ1(a1, a3) by assumption and ϕ(a1, a1) 6= ϕ(a1, a3), we
have that ψ3(a1, a1) 6= ψ3(a1, a3). By inductive hypothesis this means
that ψ3(a1, a3) ∈ A1 ∪ A3 ∪ A4. By Lemmas 6.4 and 6.4 we obtain that
ψ3(a1, a1) ∈ A1 ∪ A3 ∪ A4 too. But this implies that

ϕ(a1, a1) = a4 = ϕ(a1, a3)

contradicting the fact that ϕ(a1, a1) 6= ϕ(a1, a3).
3. By inductive hypothesis we have that ψ3(a1, a3) ∈ A1 ∪ A3 ∪ A4.

Suppose towards a contradiction that ϕ(a1, a3) /∈ A1 ∪ A3 ∪ A4. Then we
have that ψ1(a1, a3) /∈ A1 ∪ A3 ∪ A4. Consider b ∈ A and n 6 8 such that
bn = ψ1(a1, a3). By the definition of ♥ we have that ϕ(a1, a3) = b7. On
the other hand, observe that applying Lemmas 6.4 and 6.3 to the fact that
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ψ3(a1, a3) ∈ A1 ∪ A3 ∪ A4, we obtain that ψ3(a1, a1) ∈ A1 ∪ A3 ∪ A4 as well.
Together with the fact that ψ1(a1, a1) = ψ1(a1, a3) /∈ A1 ∪ A3 ∪ A4, this
implies that ϕ(a1, a1) = b7. But this contradicts the fact that ϕ(a1, a1) 6=
ϕ(a1, a3). �
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