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Abstract. We characterize, in syntactic terms, the ranges of epimor-
phisms in an arbitrary class of similar first-order structures (as opposed
to an elementary class). This allows us to strengthen a result of Bacsich,
as follows: in any prevariety having at most s non-logical symbols and
an axiomatization requiring at most m variables, if the epimorphisms
into structures with at most m + s + ℵ0 elements are surjective, then so
are all of the epimorphisms. Using these facts, we formulate and prove
manageable ‘bridge theorems’, matching the surjectivity of all epimor-
phisms in the algebraic counterpart of a logic ` with suitable infinitary
definability properties of `, while not making the standard but awkward
assumption that ` comes furnished with a proper class of variables.

1. Introduction

‘Bridge theorems’ of abstract algebraic logic [8, 14, 16, 17] have the form

` has logical property P iff K has algebraic property Q,

where ` is an algebraizable logic and K is its algebraic counterpart—in
which case K is a prevariety, at least. Examples include connections between
Beth definability properties and the surjectivity of epimorphisms. Roughly
speaking, Beth properties ask that, whenever a set Γ of formal assertions
about ~x, ~z defines ~z implicitly in terms of ~x, then it does so explicitly as
well. (Greater precision will be offered in Section 7.)

In fact, there are bridge theorems characterizing several different Beth-
style properties by demands that various kinds of epimorphism be surjective.
The first of these was proved by Németi; see [24, Thm. 5.6.10]. Others were
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provided in [26, 27, 6, 11]. Concrete antecedents involving special families
of logics can be found in Maksimova’s work, e.g., see [19, 31, 32].

Blok and Hoogland [6] showed that the straightforward ES property—
i.e., the demand that all epimorphisms in K be surjective—corresponds to
an infinite version of the Beth property, where no cardinal is assumed to
bound the lengths of the sequences ~x, ~z, nor the size of Γ. When testing
for implicit definability, we need to substitute expressions for the variables
~z, and this may introduce fresh variables. For such reasons, in the general
bridge theorem connecting the ES and infinite Beth properties, the logic `
needs to be formulated with a proper class of variables.

On the other hand, many familiar algebraizable logics are finitary, with
only countably many connectives, and are formalized using a countable set
of variables—as nothing more is required for their axiomatization. When
working with such logics, one would prefer a version of the infinite Beth
property that also presupposes only a set of variables, but is still provably
equivalent to the unrestricted ES property for the algebraic counterpart.

It seems, however, that the published literature of abstract algebraic logic
contains no such bridge theorem. Analyzing the core proof in [6], we find
that the gap would be filled by the following claim, where m, s are cardinals:

If a prevariety K lacking the ES property has just s opera-
tion symbols and an axiomatization that uses only m vari-
ables, then there is a non-surjective K–epimorphismA −→ B,
where B has at most m + s + ℵ0 elements.

This claim (generalized to first-order structures) is Theorem 5.1 of the pre-
sent paper. One of its specializations (which follows also from a result of
Bacsich [2]) says that

in a quasivariety of countable type, if the epimorphisms into
countable structures are surjective, then so are all of the
epimorphisms.

We use these facts to obtain more manageable bridge theorems (Theo-
rem 7.6, Corollaries 7.7, 7.8), connecting the unrestricted ES property with
suitably localized infinite Beth properties for logics formalized with limited
variables and connectives. The bridge theorems cater for all equivalential
logics and specialize to the algebraizable ones.

The proof of Theorem 5.1 rests on a general syntactic characterization
of the ranges of epimorphisms (Theorem 3.1), which widens the scope of
Bacsich [2, Thm. 1] and Campercholi [12, Thm. 3]. (The earlier accounts
apply only to classes closed under ultraproducts.)

2. Atomic Consequence

We work in the conservative extension NBG of ZFC (i.e., in the class
theory of von Neumann, Bernays and Gödel, including the axiom of choice).
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The cardinality of the signature of a first-order language is the sum of
the cardinalities of its (disjoint) sets of operation and relation symbols. The
ranks of these symbols are assumed finite, and nonzero in the case of rela-
tions. Only first-order signatures will be considered. A signature is algebraic
if it has no relation symbols.

For a given signature, a structure denoted by A is assumed to have uni-
verse A (a non-empty set) and algebra reduct A = 〈A;O〉 for a suitable set
O of operations on A, so that A = 〈A;O,R〉 for a suitable set R of relations
on A. The subalgebra of A and the substructure of A generated by a set
X ⊆ A have the same universe; the latter is denoted by SgA(X). A homo-
morphism h : A −→ B is understood to preserve the relations in R (as well
as the operations in O), but it need not reflect the relations. As usual, the
kernel {〈a, a′〉 ∈ A2 : h(a) = h(a′)} of h is denoted by kerh.

It is convenient here to have recourse to a fixed proper class Var of vari-
ables. For each subset X of Var , we use T (X) to denote the absolutely
free algebra (a.k.a. the term algebra) generated by X, with respect to the
operation symbols of the signature under discussion. Given a class Σ ∪ {p}
of expressions over Var , the set of variables occurring in p shall be denoted
by var(p), while var(Σ) :=

⋃
s∈Σ var(s).

Recall that the atomic formulas of a signature are either equations ϕ ≈ ψ
or expressions r(ϕ1, . . . , ϕn), where r is a relation symbol and ϕ,ψ, ϕ1, . . . , ϕn
are terms over Var . We tacitly identify ϕ ≈ ψ with the pair 〈ϕ,ψ〉.

If, upon introducing a set Σ of atomic formulas, we denote it as Σ(~x), this
signifies that the elements of var(Σ) all belong to the sequence ~x of distinct
variables. (Strictly speaking, like any sequence, ~x is a function whose domain
is some ordinal δ, so |~x| = |δ|, which need not be finite.) In this context,
given a structure A of matching signature, the notation A |= Σ(~a) has the
standard model-theoretic meaning, which entails in particular that ~a is a δ–
indexed sequence of not necessarily distinct elements of A (briefly: ~a ∈ A).

Definition 2.1. For any class K of similar structures, we use the notation
Σ(~x) |=K p(~x) (or Σ |=K p) to signify that Σ(~x) ∪ {p(~x)} is a set of atomic
formulas in the signature of K and

whenever A ∈ K and A |= Σ(~a) (where ~a ∈ A), then A |= p(~a).

The displayed demand may be paraphrased a little more precisely as

for any A ∈ K and any homomorphism h : T (var(Σ ∪ {p})) −→ A,
if A |= Σ(h[~x]), then A |= p(h[~x]).

Here, h[~x] is the sequence obtained by applying h to every item of ~x. When
Σ |=K p, we say that ‘Σ/p is validated by (each member of) K’. The ordered
pair Σ/p will then be referred to as an (atomic) implication; we call it a
quasi-atomic formula if Σ is finite. 1

1 It could be rendered more suggestively as
(
& Σ

)
=⇒ p, or as

(
&s∈Σ s

)
=⇒ p.
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In this paper, we shall not need to deal with formulas more complex than
implications. Any syntactic substitution instance Σ(~ϕ) of Σ(~x) shall have the
form {s(h[~x]) : s ∈ Σ}, where h : T (var(Σ)) −→ T (Y ) is a homomorphism,
Y being a subset of Var .

The class operator symbols I, H, S, P and PU stand, respectively, for clo-
sure under isomorphic and homomorphic (surjective) images, substructures,
(set-indexed) direct products and ultraproducts.

A class K of similar structures is said to be axiomatized by a class Ξ of
implications if K is the class of all structures validating all of the implications
in Ξ. In this case, K is a prevariety, i.e., it is closed under I, S and P.

Conversely, every prevariety is axiomatized by a class Ξ of implications;
see Banaschewski and Herrlich [3]. The claim that we cannot always find a
set to play the role of Ξ (or equivalently, of var(Ξ)) is consistent with NBG.
Its negation (i.e., the claim that sets suffice) is consistent with NBG if huge
cardinals exist. These facts were established by Adámek [1].

A prevariety can be axiomatized by a class—w.l.o.g. a set—of quasi-
atomic [resp. atomic] formulas iff it is closed under PU [resp. H], in which case
we call it a quasivariety [resp. a variety ], even if its members are not pure
algebras. The reader may consult [20, Ch. 2] for proofs of these well-known
results (which originate in [5, 21, 33]).

Definition 2.2. For any class K of similar structures and any infinite car-
dinal m, the relation |=K is said to be m–compact provided that,

whenever Σ |=K p, then Σ′ |=K p for some Σ′ ⊆ Σ with |Σ′| < m.

We say that |=K is finitary if it is ℵ0–compact.

If K is closed under PU (e.g., if K is a quasivariety), then |=K is fini-
tary. The terminology of Definition 2.2 applies, more generally, to arbitrary
relations from subsets of a class to elements of the same class.

3. Epimorphisms

A morphism h in a category C is called a (C–) epimorphism provided that,
for any two C–morphisms f, g from the co-domain of h to a single object,

if f ◦ h = g ◦ h, then f = g.

We shall not distinguish notationally between a class K of similar (first-
order) structures and the concrete category of all homomorphisms between
its members. Clearly, within such a category, every surjective homomor-
phism is an epimorphism. If the converse holds, then K is said to have the
epimorphism surjectivity property, or briefly, the ES property.

A substructure D of a structure B ∈ K is said to be (K–) epic in B if each
homomorphism from B to a member of K is determined by its restriction
to D. (This is equivalent to the demand that the inclusion map D −→ B
be an epimorphism, provided that K is closed under S.) Of course, a K–
morphism h : A −→ B is an epimorphism iff h[A] is an epic substructure of
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B. Therefore, K has the ES property iff each of its members has no proper
epic substructure.

The significance of epimorphisms for formal deductive systems (alluded
to in the introduction) will be elaborated in Section 7. For the moment,
however, structures are our concern. Already in the context of algebras, we
may recall that rings and distributive lattices each form varieties lacking the
ES property. This reflects the absence of unary terms defining multiplica-
tive inverses in rings, and complements in distributive lattices, despite the
uniqueness of those entities when they exist.

The connection between such ‘implicitly defined’ constructs and epimor-
phisms was remarked upon in the algebraic literature long ago (e.g., see
Freyd [18, p. 93] and Isbell [28]). It was given a syntactically sharper char-
acterization by Bacsich [2, Thm. 1] and by Campercholi [12, Thm. 3] (see
Remark 3.3 below), but their accounts are confined, respectively, to universal
classes and to classes closed under ultraproducts. With logical applications
in mind, we extend the result to arbitrary classes in the next theorem.

Theorem 3.1. Let K be any class of similar structures, A a substructure of
B ∈ K and Z ⊆ B\A, where B = SgB(A∪Z). Then the following conditions
are equivalent.

(i) A is K–epic in B.
(ii) For each b ∈ Z, there is a set Σ = Σ(~x, ~z, v) of atomic formulas such

that B |= Σ(~a,~c, b) for suitable ~a ∈ A and ~c ∈ B, and

(1) Σ(~x, ~z, v1) ∪ Σ(~x, ~y, v2) |=K v1 ≈ v2.

In this case, for each b ∈ Z, we can arrange that |~z| ≤ |Z| and ~c ∈ Z.

Proof. (i)⇒ (ii): Let ~xA and ~xZ be sequences of variables whose disjoint
ranges, {xa : a ∈ A} and {xb : b ∈ Z}, are bijective copies of A and Z,
respectively. Let T = T (~xA, ~xZ) be the absolutely free algebra generated by
the combined ranges of ~xA and ~xZ . Let h : T −→ B be the homomorphism
such that h(xa) = a and h(xb) = b for all a ∈ A and b ∈ Z. Note that h is
surjective, as A ∪ Z generates B.

Now fix b ∈ Z. Let ~xZ\{b} denote the subsequence of ~xZ whose range omits
xb. For notational convenience, assume that ~xZ is ordered as ~xZ\{b}, xb.

Let Σ = Σ(~xA, ~xZ\{b}, xb) be the set of all atomic formulas r(~xA, ~xZ) such
that B |= r(h[~xA], h[~xZ ]). Note that kerh ⊆ Σ, as Σ includes equations.

Because B |= Σ(h[~xA], h[~xZ\{b}], h(xb)), where h(xb) = b and the items
in h[~xA] and h[xZ\{b}] belong to A and Z (respectively), it remains only to
prove that Σ(~xA, ~xZ\{b}, xb) ∪ Σ(~xA, ~yZ\{b}, yb) |=K xb ≈ yb.

Let C ∈ K and let g1, g2 : T −→ C be homomorphisms that agree on ~xA,
where C |= r(g1[~xA], g1[~xZ ]) and C |= r(g2[~xA], g2[~xZ ]) for all r(~xA, ~xZ) ∈ Σ.
Then kerh ⊆ ker g1 ∩ ker g2. We must show that g1(xb) = g2(xb).

Let j ∈ {1, 2}. Because h is surjective and kerh ⊆ ker gj , the function
h(ϕ) 7→ gj(ϕ) is a well defined homomorphism fj : B −→ C. In fact, fj



6 T. MORASCHINI, J.G. RAFTERY, AND J.J. WANNENBURG

is a homomorphism from B to C, by the definitions of Σ and gj . For each
a ∈ A, we have fj(a) = fj(h(xa)) = gj(xa), but g1 and g2 agree at xa, so
f1|A = f2|A. Then f1 = f2, since C ∈ K and A is K–epic in B. Therefore,
g1(xb) = f1(b) = f2(b) = g2(xb), as required.

(ii)⇒ (i): Let g, h : B −→ C ∈ K be homomorphisms, with g|A = h|A.
We must show that g = h. As A ∪ Z generates B, it suffices to prove that
g|Z = h|Z . Let b ∈ Z, and let Σ and ~a ∈ A and ~c ∈ B be as in (ii). From
B |= Σ(~a,~c, b) we infer C |= Σ(g[~a], g[~c], g(b)) and C |= Σ(h[~a], h[~c], h(b)).
But g[~a] = h[~a], as g|A = h|A, so g(b) = h(b), by (1). Thus, g|Z = h|Z . �

Remark 3.2. In Theorem 3.1(ii), if |=K is finitary (e.g., if K is closed under
ultraproducts), then each Σ can be chosen finite.

Remark 3.3. Given A ∈ S(B), it is sometimes convenient to define the

K–dominion domK
BA (of A in B) as the set of all b ∈ B such that any two

homomorphisms from B to a member of K will agree at b if they agree on
A. Then A is K–epic in B iff domK

BA = B. In the above proof, if we choose

Z = B\A, then the argument shows that, for any b ∈ B, we have b ∈ domK
BA

iff there exist a set of atomic formulas Σ(~x, ~z, v) such that B |= Σ(~a,~c, b) for
suitable ~a ∈ A and ~c ∈ B, and (1) holds. Restricting to the case where K is
closed under PU (whence each Σ can be chosen finite, by Remark 3.2), we
obtain a more elementary proof of the aforementioned result of Bacsich [2,
Thm. 1], and likewise Campercholi [12, Thm. 3]. 2

Remark 3.4. In a structure B, a substructure A is said to be almost total
if B = SgB(A ∪ Z) for some finite Z ⊆ B. By Theorem 3.1, the demand
that an almost total substructure of B be K–epic is characterized by the
existence of finitely many suitable implications (of possibly infinite length),
each having only finitely many variables in the role of ~z. We say that K
has the weak ES property if no B ∈ K has a proper K–epic almost total
substructure. It is pointed out in [6, p. 76] that the meaning of this demand
would not change if, in the definition of ‘almost total’, we required |Z| = 1.

4. m–Prevarieties

From now on, m shall denote a fixed but arbitrary infinite cardinal. As
usual, m+ stands for the cardinal successor of m.

As was mentioned in Section 2, our ability to axiomatize arbitrary pre-
varieties using only sets of variables depends on the set theory in which we
work [1]. This justifies our interest in the following classes.

Definition 4.1. An m–prevariety is a class of structures axiomatized by
implications, each of which is formulated in at most m variables.

Suppose Ξ is a set of implications axiomatizing K, where var(Ξ) ⊆ Y and
|Y | ≤ m. Then the set of atomic formulas over Y has cardinality at most
n := m+s, where s is the cardinality of the signature. Therefore, each of the

2 Dominions were introduced (for algebras) by Isbell [28]; also see [10, 11, 25, 37].
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implications in Ξ has at most n atomic subformulas. From this it follows
easily that K is closed under n+–reduced products, i.e., for any subfamily
{Ai : i ∈ I} of K and any n+–complete filter D over I, the reduced product∏
i∈I Ai/D belongs to K. The demand that D be n+–complete means that,

whenever E ⊆ D and |E| ≤ n, then
⋂
E ∈ D. In summary:

Lemma 4.2. (cf. [20, Prop. 2.3.19]) Each m–prevariety is closed under
(m + s)+–reduced products, where s is the cardinality of the signature.

Theorem 4.3. Let K be an m–prevariety, whose signature has cardinality
s. Then |=K is (m + s)+–compact.

Proof. Let n = m + s and suppose Σ(~x) |=K p(~x), where ~x = x0, x1, . . . is a
sequence of (possibly more than n) variables. Let I = {Λ ⊆ Σ : |Λ| ≤ n}.
For each Λ ∈ I, let IΛ = {Γ ∈ I : Λ ⊆ Γ}, so IΛ 6= ∅ (as Λ ∈ IΛ). Define

D = {J ⊆ I : J ⊇ IΛ for some Λ ∈ I},
so ∅ /∈ D, and D is upward closed in the power set of I. To see that D is
an n+–complete filter over I, let E ⊆ D, with |E| ≤ n. For each J ∈ E,
choose ΛJ ∈ I such that J ⊇ IΛJ

. Let Λ =
⋃
J∈E ΛJ . Because |ΛJ | ≤ n for

all J ∈ E, we have |Λ| ≤ n · |E| = n, so Λ ∈ I. Also,
⋂
E ⊇

⋂
J∈E IΛJ

= IΛ,
so
⋂
E ∈ D, as required.

Assume, with a view to contradiction, that for each Λ ∈ I, there exists
AΛ ∈ K such that Λ 6|={AΛ} p, i.e., there exists ~aΛ = aΛ

0 , a
Λ
1 , . . . ∈ AΛ such

that AΛ |= Λ(~aΛ) but AΛ 6|= p(~aΛ). Let B =
∏

Λ∈I AΛ and A = B/D, so
A ∈ K, by Lemma 4.2. In particular, Σ |={A} p.

Define ~b = b0, b1, . . . ∈ B by bk(Λ) = aΛ
k , for each k,Λ. If s ∈ Σ, then

{s} ∈ I and I{s} ⊆ [s(~b)] := {Λ ∈ I : AΛ |= s(b0(Λ), b1(Λ), . . .)},

so [s(~b)] ∈ D. Thus, A |= Σ(~b), but [p(~b)] = ∅ /∈ D, so A 6|= p(~b). This
shows that Σ 6|={A} p, a contradiction, so Λ |=K p for some Λ ∈ I. �

5. ES Properties

A structure is said to be n–generated (where n is a cardinal) if its algebra
reduct has a generating subset with at most n elements. ‘Finitely generated’
means n–generated for some n ∈ ω. (Recall that m is infinite.)

Theorem 5.1. Let K be an m–prevariety whose signature has cardinality
s. Then K has the ES property iff no structure in K of cardinality at most
m + s has a proper K–epic substructure.

Proof. Again, let n = m + s. Suppose that K lacks the ES property, i.e.,
some B ∈ K has a proper K–epic substructure A. We must show that some
C ∈ K, with |C| ≤ n, has a proper K–epic substructure.

We shall define, recursively, a denumerable sequence C0, C1, C2, . . . of sub-
structures of B, where Ci ∈ S(Ci+1) for each i ∈ ω.

First, pick b ∈ B\A and a ∈ A, and define C0 = SgB{a, b}, so C0 6⊆ A.
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Now assume that Ci ∈ S(B) has been defined, where i ∈ ω, and that
Ci 6⊆ A. Choose c ∈ Ci\A. As c ∈ B\A, Theorem 3.1 shows that there exist

a set of atomic formulas Σ(~x, ~z, v) and elements ~ac ∈ A and ~dc ∈ B\A, such

that B |= Σ(~ac, ~dc, c) and Σ(~x, ~z, v1)∪Σ(~x, ~y, v2) |=K v1 ≈ v2. Moreover, |=K

is n+–compact, by Theorem 4.3, so we may assume that |Σ| ≤ n, and hence

that |var(Σ)| ≤ n. Consequently, |~ac|, |~dc| ≤ n. Let Wi be the union of (the

ranges of) all the sequences ~ac and ~dc such that c ∈ Ci\A, so

(2) |Wi| ≤ n · |Ci| .
Define Ci+1 = SgB(Ci ∪Wi).

Let C ∈ S(B) be the (directed) union
⋃
i∈ω Ci, so C ∈ K. Now D := C∩A

is not empty, as it includes a, so D is the universe of a substructure D of B.
Also, D is a proper substructure of C, as b ∈ C\D.

To see that D is K–epic in C, let c ∈ C\D. Then c ∈ Ci\A for some i ∈ ω.

Pick Σ, ~ac and ~dc as in the inductive step. Because the substructure Ci+1 of

C includes ~ac, ~dc, c and satisfies Σ(~ac, ~dc, c), the same is true of C. So, noting
that ~ac ∈ D, we infer from Theorem 3.1 that D is K–epic in C.

As s + ℵ0 ≤ n, the union C of the family {Ci : i ∈ ω} will have at most
n elements if every Ci is n–generated, which we verify by induction. Indeed,
C0 is 2–generated, and if some Ci is n–generated, then so is Ci+1, by (2). �

The corollary below is due to Bacsich [2]. (For varieties of algebras, it
follows from an earlier finding of Isbell [28, Cor. 1.3].)

Corollary 5.2. ([2, Thm. 2]) Let K be a quasivariety with a countable
signature. Then K has the ES property if and only if no countable member
of K has a proper K–epic substructure.

Proof. Since K can be axiomatized by a set of finite implications, it is an
ℵ0–prevariety, and the result follows from Theorem 5.1. �

Remark 5.3. An ℵ0–prevariety need not be a quasivariety, even if it has
a variable-free axiomatization: see [1, p. 45]. Nevertheless, in Corollary 5.2,
we cannot strengthen ‘countable’ to ‘finitely generated’. Indeed, a locally
finite variety K of Brouwerian algebras and a proper K–epic subalgebra of a
denumerable member of K are exhibited in [4, Sec. 6], but no finitely gener-
ated (i.e., finite) member of K has a proper K–epic subalgebra, because every
variety of Brouwerian algebras has the weak ES property (see Remark 3.4,
[6, Thm. 3.14] and [29]).

On the other hand, finitely generated structures do suffice, in quasivari-
eties, to test the weak ES property itself:

Theorem 5.4. A quasivariety K has the weak ES property iff no finitely
generated member of K has a proper K–epic substructure.

Proof. Suppose that some B ∈ K has a proper K–epic almost total substruc-
ture A. So, B = SgB(A ∪ Z) for some finite non-empty set Z ⊆ B\A. Let
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b ∈ Z. Because K is a quasivariety, Remark 3.2 shows that there exist a

finite set of atomic formulas Σb(~x, ~z, v) and elements ~ab ∈ A and ~db ∈ Z

such that B |= Σb(~ab, ~db, b) and Σb(~x, ~z, v1) ∪ Σb(~x, ~y, v2) |=K v1 ≈ v2. As

var(Σb) is finite, the sequences ~ab and ~db may be chosen finite.

Let Y be the union of (the ranges of) all the sequences ~ab such that b ∈ Z,
so Y is finite. Let A′ = SgA Y and B′ = SgB(Y ∪ Z). Then A′ is a proper
(almost total) substructure of the finitely generated structure B′ ∈ K. For

all b ∈ Z, we have ~ab, ~db, b ∈ B′ and B′ ∈ S(B), so B′ |= Σb(~ab, ~db, b). Then,
since ~ab ∈ A for each b ∈ Z, Theorem 3.1 shows that A′ is K–epic in B′. �

6. Equivalential and Algebraizable Logics

For a class C, we use P(C) to denote the class of all subsets of C.

Definition 6.1. In a given algebraic signature, a deductive system (briefly,
a logic) over a set X is a relation ` ⊆ P(T (X)) × T (X) satisfying the
demands below, whenever Γ ∪Ψ ∪ {ϕ} ⊆ T (X):

(i) Γ ` ϕ for all ϕ ∈ Γ;
(ii) if Γ ` ψ for all ψ ∈ Ψ, and Ψ ` ϕ, then Γ ` ϕ;
(iii) if Γ ` ϕ, then h[Γ] ` h(ϕ) for all endomorphisms h of T (X).

Item (iii) is called substitution-invariance. In this context, operation sym-
bols and elements of P(T (X)) × T (X) are usually called ‘connectives’ and
‘rules’, respectively. 3

As the set of logics over X is closed under arbitrary intersections, any
subset Ξ of P(T (X))× T (X) generates such a logic (which is then also said
to be axiomatized by Ξ). A pair Γ/ϕ in P(T (X)) × T (X) belongs to that
logic iff ϕ terminates some (possibly infinite) sequence, each item of which
belongs to Γ or is h(ψ) for some endomorphism h of T (X) and some pair
Ψ/ψ from Ξ, where h[Ψ] consists of previous items of the sequence. (Here,
Ψ may be empty.) This observation goes back, in principle, to [30].

Definition 6.2. In a given algebraic signature, a logic over the proper
class Var is a family ` = {`X : X ∈ P(Var)}, where each `X is a logic
over X (called a slice of `) and the following variant of (iii) (called strong
substitution-invariance) holds:

(iv) for any X,Y ∈ P(Var), if Γ`Xϕ, then h[Γ]`Y h(ϕ) for all homo-
morphisms h : T (X) −→ T (Y ).

In this case, the notation Γ ` ϕ signifies that Γ`Xϕ for some X ∈ P(Var),
whence var(Γ∪ {ϕ}) ⊆ X. (Conversely, if var(Γ∪ {ϕ}) ⊆ X ∈ P(Var) and
Γ ` ϕ, then Γ`Xϕ, by (iv).)

3 Terms in T (X) correspond intuitively to assertions (as in Boolean algebra), but we
resist the temptation to call them ‘formulas’, so as to prevent confusion with the first-order
(e.g., atomic) formulas in the richer language of the class Mod∗(`), defined below.
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Every logic `∗ over a subset X of the proper class Var may be viewed
as the X–slice of a logic ` over all of Var . One such `, which we label
as induced by `∗, is defined by requiring that each of its slices `Y be the
logic over Y generated by the set of all pairs h[Γ]/h(ϕ) such that Γ`∗ϕ
and h : T (X) −→ T (Y ) is a homomorphism. (This ` satisfies (iv), by the
syntactic characterization of `Y preceding Definition 6.2.)

Henceforth, ` is assumed to be a logic either over Var or over an infinite
subset of Var . Note that it is only for sets Γ∪{ϕ} that the notation Γ ` ϕ is
defined. All claims in the present section can be found in standard texts on
abstract algebraic logic, e.g., [8, 14, 17] and the recent [16]. Their proofs are
not affected by the extent of the class of variables. In fact, the class-versus-
set distinction will be unimportant, except in connection with Definitions 7.1
and 7.3 of Section 7.

If Γ ` ϕ, then the pair Γ/ϕ is called a derivable rule of `. The expression
Γ ` Ψ abbreviates ‘Γ ` ξ for all ξ ∈ Ψ’, while Γ a` Ψ means ‘Γ ` Ψ and
Ψ ` Γ’, and ` Ψ stands for ∅ ` Ψ. (The same conventions will apply to
relations of the form |=K below.)

A (` –) matrix 〈A, F 〉 comprises an algebra A in the signature of ` and
a set F ⊆ A. We regard it as a structure A for the signature whose op-
eration symbols are the connectives of ` and whose sole relation symbol r
is unary, so that A |= r(a) iff a ∈ F . Intuitively, r is a ‘truth’ predicate.
The substructures 〈B, B ∩ F 〉 (B ∈ S(A)) of A are usually called subma-
trices. Similarly, matrix homomorphisms are the homomorphisms between
matrices, considered as algebras with a distinguished unary relation.

Given a class M of matrices, we abbreviate {r(γ) : γ ∈ Γ} |=M r(ϕ) as
Γ |=M ϕ. When this is true, the rule Γ/ϕ is said to be validated by (each
member of) M. Abusing notation, we also use Γ |=M ϕ ≈ ψ to abbreviate
{r(γ) : γ ∈ Γ} |=M ϕ ≈ ψ (where Γ still consists of terms, not equations).

A matrix 〈A, F 〉 is called a model of ` if it validates all the derivable
rules of `, in which case F is called a `–filter of A. The set Fi`A of all
`–filters of A is closed under arbitrary intersections and is therefore the
universe of a complete lattice Fi`A, ordered by inclusion.

Given a matrix 〈A, F 〉, we denote by ΩAF the largest congruence θ of
A for which F is a union of θ–classes (i.e., for which b ∈ F whenever both
〈a, b〉 ∈ θ and a ∈ F ). This congruence always exists. If h : B −→ A is a
homomorphism and F is a `–filter ofA, then h−1[F ] := {b ∈ B : h(b) ∈ F}
is a `–filter of B and

ΩBh−1[F ] ⊇ h−1[ΩAF ] := {〈b, b′〉 ∈ B2 : 〈h(b), h(b′)〉 ∈ ΩAF}.
If, moreover, h is surjective, then

(3) h−1[ΩAF ] = ΩBh−1[F ].

The maps F 7→ ΩAF (F ∈ Fi`A), taken over all algebras A, constitute
the Leibniz operator of `. This operator is not always isotone, i.e., from
F,G ∈ Fi`A and F ⊆ G, it need not follow that ΩAF ⊆ ΩAG.
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A matrix 〈A, F 〉 is said to be reduced if ΩAF = idA := {〈a, a〉 : a ∈ A}.
The derivable rules of ` are exactly the pairs Γ/ϕ validated by the class
Mod∗(`) of all reduced matrix models of ` (i.e., Γ ` ϕ iff Γ |=Mod∗(`) ϕ).
We treat Mod∗(`) as a concrete category, equipped with all matrix homo-
morphisms between its members.

Theorem 6.3. The following conditions on ` are equivalent.

(i) Mod∗(`) is a prevariety.
(ii) The Leibniz operator of ` is isotone (for all algebras) and (3) holds

for all homomorphisms h : B −→ A and all `–filters F of A.
(iii) There exists a set ∆ of binary terms such that, for any matrix model

〈A, F 〉 of `, we have ΩAF = {〈a, b〉 ∈ A2 : ∆A(a, b) ⊆ F}.
(iv) There exists a set ∆ of binary terms such that

` ∆(x, x);

{x} ∪∆(x, y) ` y;

∆(x1, y1) ∪ . . . ∪∆(xn, yn) ` ∆(ϕ(x1, . . . , xn), ϕ(y1, . . . , yn)),

for every connective ϕ of `, where n is the rank of ϕ.

A set ∆ of binary terms witnesses (iii) iff it witnesses (iv). In that case,
the third demand in (iv) generalizes from connectives ϕ to arbitrary terms.

We say that ` is equivalential if the conditions in Theorem 6.3 hold. The
elements of the set ∆ in (iii) or (iv) are then called equivalence formulas for
`, and they are unique in the sense that ∆(x, y) a` ∆′(x, y) for any other
such set ∆′. In this case, ∆(x, y) |=Mod∗(`) x ≈ y, by (iii). For the roots of
Theorem 6.3, see [38, pp. 222–3], as well as [9, 13, 14, 23, 34].

Remark 6.4. Suppose ∆ is a set of equivalence formulas for `, with r as
above. Then Mod∗(`) is clearly axiomatized by the implications

{r(γ) : γ ∈ Γ} / r(ϕ)

corresponding to the rules Γ/ϕ in any given axiomatization Ξ of `, together
with the postulate

{r(ρ(x, y)) : ρ ∈ ∆} / x ≈ y.

Thus, if var(Ξ) is a set, then Mod∗(`) is a (|var(Ξ)| + ℵ0)–prevariety. In
general, Mod∗(`) is a quasivariety iff ` is finitely equivalential (i.e., equipped
with a finite set of equivalence formulas) and finitary [13, 9].

We define Alg∗(`) = {A : 〈A, F 〉 ∈ Mod∗(`) for some F}.
Given a class K ∪ {A} of similar algebras, let ConKA denote the set of

all K–congruences of A, i.e., all congruences θ such that A/θ ∈ K. If K
is a prevariety, then ConKA is closed under arbitrary intersections and is
therefore the universe of a complete lattice, ConKA, ordered by inclusion.
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Theorem 6.5. The following conditions on ` are equivalent.

(i) ` is equivalential and its reduced matrix models are determined by
their algebra reducts, i.e., whenever 〈A, F 〉, 〈A, G〉 ∈ Mod∗(`), then
F = G.

(ii) Alg∗(`) is a prevariety and, for each algebra A, the map F 7→ ΩAF
defines a lattice isomorphism from Fi`A onto ConAlg∗(`)A.

(iii) There exist a class K of algebras, a set {〈δi, εi〉 : i ∈ I} of pairs
of unary terms and a set ∆ of binary terms such that, for any set
Γ ∪ {ϕ} of terms,

Γ ` ϕ iff {δi(γ) ≈ εi(γ) : γ ∈ Γ, i ∈ I} |=K {δi(ϕ) ≈ εi(ϕ) : i ∈ I};
{δi(ρ(x, y)) ≈ εi(ρ(x, y)) : i ∈ I, ρ ∈ ∆} =||=K x ≈ y.

In this case, ∆ is a set of equivalence formulas for `, and Alg∗(`) is the
unique prevariety K of algebras for which (iii) holds.

We say that ` is algebraizable and, more explicitly, that Alg∗(`) alge-
braizes `, if the conditions of Theorem 6.5 hold. The pairs in (iii) are then
unique in the sense that

{δi(x) ≈ εi(x) : i ∈ I} =||=Alg∗(`) {δ′j(x) ≈ ε′j(x) : j ∈ J}

for any other such set {〈δ′j , ε′j〉 : j ∈ J}. In this case, when 〈A, F 〉 ∈ Mod∗(`),

then F = {a ∈ A : δAi (a) = εAi (a) for all i ∈ I}. The concrete categories
Mod∗(`) and Alg∗(`) are therefore isomorphic when ` is algebraizable.

The original definition of algebraizability is due to Blok and Pigozzi [8].
Its scope was widened in [7, 14, 23] and adapted to logics over proper classes
in [15]. For the origins of Theorem 6.5, see [8, 9] also.

Remark 6.6. When the conditions of Theorem 6.5 hold, then ` is axiom-
atized by the postulates captured in Theorem 6.3(iv), in the relation

x a`
⋃
i∈I∆(δi(x), εi(x))

and in the rules
⋃
〈ξ,η〉∈Σ ∆(ξ, η) ` ∆(ϕ,ψ) corresponding to the equational

implications Σ/ϕ ≈ ψ belonging to any axiomatization of Alg∗(`). In this
case, therefore, if Alg∗(`) is an m–prevariety, then ` can be axiomatized
using at most m variables.

7. Beth Definability Properties

Definition 7.1. ([6]) A logic ` over the proper class Var is said to have
the (deductive) infinite Beth (definability) property if the following holds for
all disjoint subsets X,Z of Var , with T (X) 6= ∅, and all Γ ⊆ T (X ∪ Z): if,

for each z ∈ Z and each homomorphism h : T (X ∪ Z) −→ T (Y ),
with Y ∈ P(Var), such that h(x) = x for all x ∈ X, we have
Γ ∪ h[Γ] |=Mod∗(`) z ≈ h(z),

then, for each z ∈ Z, there exists ϕz ∈ T (X) such that Γ |=Mod∗(`) z ≈ ϕz.
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Theorem 7.2. ([6, Thm. 3.12]) Let ` be an equivalential logic over a proper
class. Then ` has the infinite Beth property iff, in the prevariety Mod∗(`),
all epimorphisms are surjective.

We have not found the following definition in the published literature.

Definition 7.3. Let ` be a logic over an infinite set V . We shall say that
` has the (V –) localized infinite Beth property provided that the following
is true for all disjoint subsets X,Z of V and all Γ ⊆ T (X ∪ Z), such that
T (X) 6= ∅ and |V \(X ∪ Z)| ≥ |Z|+ ℵ0 : if,

for each z ∈ Z and each endomorphism h of T (V ), such that
h(x) = x for all x ∈ X, we have Γ ∪ h[Γ] |=Mod∗(`) z ≈ h(z),

then, for each z ∈ Z, there exists ϕz ∈ T (X) such that Γ |=Mod∗(`) z ≈ ϕz.

The displayed assumptions in Definitions 7.1 and 7.3 will both be pro-
nounced as ‘Γ defines Z implicitly in terms of X in `’. (There is no am-
biguity, since the two possibilities for ` are mutually exclusive.) The term
ϕz in the conclusion is called an explicit definition of z in terms of X, with
respect to Γ, in `.

If ∆ is a set of equivalence formulas for `, then in Definitions 7.1 and
7.3, we may replace Γ ∪ h[Γ] |=Mod∗(`) z ≈ h(z) and Γ |=Mod∗(`) z ≈ ϕz by
the intrinsic (but equivalent) respective demands

Γ ∪ h[Γ] ` ∆(z, h(z)) and Γ ` ∆(z, ϕz).

Lemma 7.4. Let ` be an equivalential logic over the proper class Var , and
let V ∈ P(Var) be infinite. If ` has the infinite Beth property, then `V
has the localized infinite Beth property.

Proof. It is given that ` has a set ∆ of equivalence formulas. Let X, Z and
Γ be as in Definition 7.3, and h : T (X∪Z) −→ T (X∪Z) as in Definition 7.1,
where Z := var(h[Z]). Set W = V \(X∪Z). As V is infinite and ∆ consists
of binary terms, we may assume that ∆ ⊆ T (V ). In view of Theorem 6.3(iv),
∆ is also a set of equivalence formulas for `V , so we need only show that
Γ ∪ h[Γ] ` ∆(z, h(z)) for all z ∈ Z.

As
∣∣Z∣∣ ≤ |Z| + ℵ0 ≤ |W |, there are homomorphisms f : T (Z) −→ T (W )

and g : T (W ) −→ T (Z), with g ◦ f = idT (Z). Let q be the endomorphism

of T (V ) that agrees with f ◦ h on Z and that fixes all elements of V \Z.
Assuming that Γ defines Z implicitly in terms of X in `V , we infer that
Γ ∪ q[Γ] `V ∆(z, q(z)) for all z ∈ Z. Then, by Definition 6.2(iv),

(4) p[Γ] ∪ pq[Γ] ` p[∆(z, q(z))] for all z ∈ Z,

where p : T (V ) −→ T (X ∪ Z ∪ Z) is the homomorphism that agrees with g
on W , while fixing all elements of X ∪ Z. Now (4) simplifies to

Γ ∪ h[Γ] ` ∆(z, h(z)) for all z ∈ Z,
by the definitions of p and q, and since g ◦ f = idT (Z). �
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Theorem 7.5. Let ` be an equivalential logic over an infinite set V , where
` has at most |V | connectives and has the localized infinite Beth prop-
erty. Then no member of Mod∗(`) with at most |V | elements has a proper
Mod∗(`)–epic submatrix.

Proof. As V is infinite, it can be partitioned into sets V ′ and V \V ′, both
of cardinality |V |. Let B = 〈B, FB〉 ∈ Mod∗(`), with |B| ≤ |V |, and
consider a Mod∗(`)–epic submatrix A = 〈A, A ∩ FB〉 of B. As |B| ≤ |V ′|,
there is a surjection V ′ −→ B, which may be extended to a homomorphism
h : T (V ′) −→ B. Assume, with a view to contradiction, that A 6= B, and let

X = V ′ ∩ h−1[A] and Z = V ′ ∩ h−1[B\A],

so X ∪ Z = V ′ and X ∩ Z = ∅ 6= T (X). Then Γ := h−1[FB] ∈ Fi`T (V ′).

As V \(X ∪ Z) = V \V ′ has the same (infinite) cardinality as V ′, which
contains Z, we have |V \(X ∪ Z)| ≥ |Z| + ℵ0. Therefore, because A is
Mod∗(`)–epic in B, it can be shown, just as in the proof of [6, Thm. 3.12],
that for any endomorphism k of T (V ) which fixes all elements of X, and
any homomorphism g : T (V ) −→ C, where 〈C, FC〉 ∈ Mod∗(`),

if g[Γ ∪ k[Γ]] ⊆ FC , then g(z) = g(k(z)) for all z ∈ Z.

That is, Γ defines Z implicitly in terms of X in `.

Pick b ∈ B\A. As h|V ′ : V ′ −→ B is surjective, we have b = h(z) for some
z ∈ Z. By the localized infinite Beth property, Γ |=Mod∗(`) z ≈ ϕz for some
ϕz = ϕz(~x) ∈ T (X). As B ∈ Mod∗(`) and h[Γ] ⊆ FB, it follows that

b = h(z) = h(ϕz) = ϕB(h[~x]).

Now h[~x] consists of elements of A, and A ∈ S(B), so b ∈ A. This contra-
diction shows that A = B, as required. �

We can now prove the following bridge theorem, in which the need to
consider proper classes is eliminated for symbolically limited logics.

Theorem 7.6. Let ` be an equivalential logic over an infinite subset V of
the proper class Var . Let s be the cardinality of the signature of `, and
assume that ` has an axiomatization that uses at most m variables, where
m + s ≤ |V |. Then the following conditions are equivalent.

(i) ` has the localized infinite Beth property with respect to V .
(ii) No member of Mod∗(`) with at most |V | elements has a proper

Mod∗(`)–epic submatrix.
(iii) All epimorphisms in Mod∗(`) are surjective.
(iv) The logic over Var induced by ` has the infinite Beth property.

Proof. (i)⇒ (ii) instantiates Theorem 7.5.

(ii) ⇒ (iii): By Remark 6.4, Mod∗(`) is a |V |–prevariety, so the present
implication follows from Theorem 5.1.
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(iii)⇒ (iv): As ` and the induced logic `′ have the same matrix models,
Mod∗(`) = Mod∗(`′). The implication therefore follows from Theorem 7.2.

(iv)⇒ (i) instantiates Lemma 7.4. �

Corollary 7.7. Theorem 7.6 remains true for algebraizable logics ` if we
replace the terms ‘submatrix’ and ‘Mod∗(`)’ by ‘subalgebra’ and ‘Alg∗(`)’,
respectively.

Proof. Apply to Theorem 7.6 the category isomorphism between Mod∗(`)
and Alg∗(`) that is guaranteed by the algebraizability of `. �

Corollary 7.8. Let ` be a logic with a countable signature, over a denu-
merable set V of variables. Consider the following conditions.

(i) ` has the localized infinite Beth property with respect to V .
(ii) Mod∗(`) has the ES property.
(iii) Alg∗(`) has the ES property.

If ` is finitary and equivalential, then (i) and (ii) are equivalent.

If ` is algebraized by a quasivariety, then (i) and (iii) are equivalent.

Proof. A finitary equivalential logic with a countable signature satisfies the
initial hypotheses of Theorem 7.6 when m = ℵ0. For the second claim, use
Remark 6.6 (with m = ℵ0) and Corollary 7.7. �

Even for algebraizable logics, the finiteness assumptions in the two claims
of Corollary 7.8 are mutually independent: see [22] and [36], respectively.

The finite Beth property is defined like the infinite one, except that the
set Z in its definition is required to be finite. An equivalential logic ` over
a proper class has this property iff Mod∗(`) has the weak ES property [6,
Thm. 3.14, Cor. 3.15].

Let us also define the (V –) localized finite Beth property like its infinite
analogue, but stipulating that Z be finite and substituting ‘V \X is infinite’
for ‘|V \(X ∪ Z)| ≥ |Z|+ ℵ0’.

Theorem 7.6 and its corollaries have analogues for these properties. We
state only one, wherein the cardinality of the signature plays no role.

Theorem 7.9. Let ` be a logic over a denumerable subset V of the proper
class Var . Consider the following conditions.

(i) ` has the localized finite Beth property with respect to V .
(ii) No finitely generated member of Mod∗(`) has a proper Mod∗(`)–

epic submatrix.
(iii) Mod∗(`) has the weak ES property.
(iv) The logic over Var induced by ` has the finite Beth property.
(v) No finitely generated member of Alg∗(`) has a proper Alg∗(`)–epic

subalgebra.
(vi) Alg∗(`) has the weak ES property.
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If ` is finitary and finitely equivalential, then (i)–(iv) are equivalent.

If ` is algebraized by a quasivariety, then (i), (iv), (v) and (vi) are equiv-
alent (even if ` is not finitary).

Proof. (i)⇒ (ii): Adapt the proof of Theorem 7.5, arranging that h maps
V ′ onto a finite generating set for B. At the end, instead of b = h(z), we
have b = ψB(h[~x], h[~z]) for a suitable term ψ and finite sequences ~x ∈ X
and ~z ∈ Z. Apply the original argument to the items in ~z.

Both (ii)⇒ (iii) and (v)⇒ (vi) instantiate Theorem 5.4, because Mod∗(`)
is a quasivariety even in the former case (see Remark 6.4).

Otherwise, the proof is like that of Theorem 7.6 and its corollaries. �

For equivalential logics, the meaning of the finite Beth property is not
affected if we stipulate in its definition that Z be a singleton. This is deduced
from relevant bridge theorems in [6, Cor. 3.15], and the argument applies
equally to the localized finite Beth property. Therefore, by the proof in [29],
all six conditions of Theorem 7.9 hold when ` is an axiomatic extension of
intuitionistic propositional logic, or of its positive fragment (cf. Remark 5.3).

For simplicity, we have confined the above discussion to sentential logics,
but the results of this section extend straightforwardly to the ‘k–deductive
systems’ of [6, 9] and to Gentzen systems as formulated, for instance, in [35].
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