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Abstract. We present a logical and algebraic description of right adjoint functors
between generalized quasi-varieties, inspired by the work of McKenzie on category
equivalence. This result is achieved by developing a correspondence between the
concept of adjunction and a new notion of translation between relative equational
consequences.

The aim of the paper is to describe a logical and algebraic characterization of
adjunctions between generalized quasi-varieties. This characterization is achieved
by developing a correspondence between the concept of adjunction and a new
notion of translation, called contextual translation, between equational consequences
relative to classes of algebras. More precisely, given two generalized quasi-varieties
K and K′, every contextual translation of the equational consequence relative to K
into the one relative to K′ corresponds to a right adjoint functor from K′ to K and
vice-versa (Theorems 4.5 and 5.3). In a slogan, contextual translations between
relative equational consequences are the duals of right adjoint functors. Examples
of this correspondence between right adjoint functors and translations abound in
the literature, e.g., Gödel’s translation of intuitionistic logic into the modal system
S4 corresponds to the functor that extracts the Heyting algebra of open elements
from an interior algebra (Examples 4.3 and 4.6), and Kolmogorov’s translation of
classical logic into intuitionistic logic corresponds to the functor that extracts the
Boolean algebra of regular elements out of a Heyting algebra (Examples 4.4 and
4.6).

The algebraic aspect of our characterization of adjunctions is inspired by the
work of McKenzie on category equivalences [25]. Roughly speaking, McKenzie
discovered a combinatorial description of category equivalence between prevari-
eties of algebras. In particular, he showed that if two prevarieties K and K′ are
categorically equivalent, then we can transform K into K′ by applying two kinds
of deformations to K. The first of these deformations is the matrix power construc-
tion. The matrix power with exponent n ∈ ω of an algebra A is a new algebra
A[n] with universe An and whose basic m-ary operations are all n-sequences of
(m× n)-ary term functions of A, which are applied component-wise. The other
basic deformation is defined as follows. Suppose that σ is a unary term. Then,
given an algebra A, we let A(σ) be the algebra whose universe is the range of
the term function σA : A→ A and whose m-ary operations are the restrictions of
the term functions of A of the form σt, where t is an m-ary term of A, to σ[A].
McKenzie’s work shows that the prevarieties categorically equivalent to K are
exactly the ones obtained by deforming K by means of a matrix power and the
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σ construction, where σ is a unary idempotent and invertible term (here Theorem
3.14). For the relevant definitions of idempotence and invertibility, see Example
3.11. This algebraic approach to the study of category equivalence has been re-
formulated in categorical terms for example in [28, 29] and has an antecedent in
[12].

Building on McKenzie’s work and on the theory of locally presentable categories
[3], we show that every right adjoint functor between generalized quasi-varieties
(which are particular kinds of prevarieties) can be decomposed into a combi-
nation of two deformations that generalize the ones devised in the special case
of category equivalence. These deformations are matrix powers with (possibly)
infinite exponent and the following generalization of the σ construction. Given an
algebra A, we say that a set of equations θ in a single variable is compatible with
a sublanguage L of the language of A if the set of solutions of θ in A is closed
under the restriction of the operations in L . In this case we let θL (A) be the
algebra obtained by equipping the set of solutions of θ in A with the restriction of
the operations in L . The main result of the paper shows that every right adjoint
functor between generalized quasi-varieties is, up to a natural isomorphism, a
composition of the matrix power construction and the generalized σ construction
(Theorem 6.1). Moreover, every functor obtained as a composition of these defor-
mations is indeed a right adjoint. This result can be seen as a purely algebraic
formulation of the classical description of adjunctions in categories with a free
object, which can be traced back at least to [14] (Remark 6.3).

1. Algebraic preliminaries

For information on standard notions of universal algebra we refer the reader to
[6, 9, 26]. We begin with some remarks on notation. Given an algebraic language
L and a set X, we denote the set of terms over L built up with the variables in X
by Tm(L , X), and the corresponding absolutely free algebra by Tm(L , X). We
also denote the set of equations built up from X by Eq(L , X). Formally speaking,
equations are pairs of terms, i.e., Eq(L , X) := Tm(L , X) × Tm(L , X). When
the language L is clear from the context, we simply write Tm(X), Eq(X) and
Tm(X). Since every cardinal κ is a set, sometimes we write Tm(L , κ) to stress the
cardinality of the set of variables. The same convention applies to equations and
term algebras. Given two cardinals κ and λ, we denote their Cartesian product
by κ × λ, not to be confused with their product as cardinals. We denote the set of
natural numbers by ω.

We denote the class operators of isomorphism, homomorphic images, subalge-
bras, direct products, (isomorphic copies of) subdirect products and ultraproducts
respectively by I, H, S, P, P

sd
and P

u
. We assume that product-style class operators

admit empty set of indexes and give a trivial algebra as a result. We denote
algebras by bold capital letters A, B, C, etc. (with universes A, B, C, etc.). Given
a class of algebras K, we denote its language by LK.

Given an algebraic language L , a generalized quasi-equation is an expression Φ
of the form

Φ = (
∧
i∈I

αi ≈ βi)→ ϕ ≈ ψ

where I is a possibly infinite set and αi ≈ βi and ϕ ≈ ψ are equations. A quasi-
equation is a generalized quasi-equation in which the set I is finite. Given an
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algebra A, we say that a generalized quasi-equation Φ holds in A, in symbols
A � Φ, if for every assignment~a ∈ A we have that

if αAi (~a) = βAi (~a) for all i ∈ I, then ϕA(~a) = ψA(~a).

A prevariety is a class of algebras axiomatized by (a class of) arbitrary generalized
quasi-equations or, equivalently, a class closed under I,S and P. A generalized quasi-
variety is a class of algebras axiomatized by (a set of) generalized quasi-equations
whose number of variables is bounded by some infinite cardinal. These can be
equivalently characterized [7] as the classes of algebras closed under I,S,P and
Uκ (for some infinite cardinal κ), where for every class of algebras K,

Uκ(K) := {A : B ∈ K for every κ-generated subalgebra B 6 A}.

It is well known that a quasi-variety is a class of algebras axiomatized by quasi-
equations or, equivalently, a class closed under I, S, P and P

u
. A variety is a

class of algebras axiomatized by equations or, equivalently, closed under H, S
and P. Given a class of algebras K, we will denote by GQκ(K) the models of the
generalized quasi-equations in κ-many variables that hold in K and respectively
by Q(K) and V(K) the quasi-variety and the variety generated by K. It is well
known that

GQκ(K) = UκISP(K) Q(K) = ISPP
u
(K) V(K) = HSP(K).

It is worth remarking that both the existence and the non-existence of a prevariety
that is not a generalized quasi-variety are consistent (relative to large cardinals)
with von Neumann-Bernays-Gödel class theory (NGB) with the Axiom of Choice.
In fact in NBG the assumption that every prevariety is a generalized quasi-variety
is equivalent to the Vopěnka Principle, which states that every class of pairwise
non-embeddable models of a first-order theory is a set [1] (see also [16, Proposition
2.3.18]).

Given a class of algebras K and a set X 6= ∅, we denote by TmK(X) the
free algebra in K with free generators X. In general the free algebra TmK(X)
is constructed as a quotient of the term algebra Tm(X) and its elements are
congruence classes of terms equivalent in K. Sometimes we identify the universe
of TmK(X) with a set of its representatives, i.e., with a set of terms in variables X.
It is well known that TmK(X) ∈ ISP(K). Thus prevarieties contain free algebras
with arbitrary large sets of free generators. Prevarieties contain also trivial algebras,
which we denote generically by 1. Given a class of algebras K, we denote by Ksi
the collection of its subdirectly irreducible members. It is well known that if K is a
variety, then K = P

sd
(Ksi).

Given a class of algebras K and an algebra A, we say that a congruence θ of
A is a K-congruence if A/θ ∈ K, and denote the collection of K-congruences by
ConKA. In particular, we will denote by πθ : A → A/θ the canonical map on
the quotient and by 0A and 1A the identity and total congruence of A. If K is a
prevariety, then ConKA forms a closure system when ordered under the inclusion
relation. Accordingly, we denote by CgAK the closure operator of generation of
K-congruences. While speaking of congruence generation in the absolute sense,
we will simply write CgA.
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Given a class of algebras K and Φ ∪ {ε ≈ δ} ⊆ Eq(X), we define

Φ �K ε ≈ δ⇐⇒ for every A ∈ K and every h : Tm(X)→ A

if hϕ = hψ for every ϕ ≈ ψ ∈ Φ, then hε = hδ.

The relation �K is called the equational consequence relative to K. The function
CK : P(Eq(X))→ P(Eq(X)) defined by the rule

CK(Φ) := {ε ≈ δ : Φ �K ε ≈ δ}, for every Φ ⊆ Eq(X)

is a closure operator over Eq(X). It is easy to see that the validity of generalized
quasi-equations in K corresponds to the validity of deductions in the equational
consequence relative to K in the sense that

K � (
∧
i∈I

ϕi ≈ ψi)→ ε ≈ δ⇐⇒ {ϕi ≈ ψi : i ∈ I} �K ε ≈ δ.

This is reflected in the fact that if K is a prevariety, then the set of fixed points of
CK : P(Eq(X))→ P(Eq(X)) coincides with ConKTm(X). Now let K be a quasi-
variety and A an arbitrary algebra. The lattice ConKA is algebraic and its compact
elements CompKA are the finitely generated K-congruences. In particular, the
closure operator CgAK is finitary. An algebra A ∈ K is K-finitely presentable if there
is some n ∈ ω and some finitely generated K-congruence θ of TmK(n) such that
A is isomorphic to TmK(n)/θ.

2. Categorical preliminaries

For standard information on category theory we refer the reader to [2, 5, 22],
while for categorical universal algebra see [3, 4]. For the sake of simplicity, we
chose to organize this section in two three that deal with different but related
topics. The reader familiar with basic categorical universal algebra and locally
presentable categories may safely chose to skip to the next section.

2.1. Generalized quasi-varieties. In this part we explain that prevarieties seen as
categories (with algebras as objects and homomorphisms as arrows) are bicomplete,
i.e., they have small limits and small colimits. To this end, we will conform to the
following convention: an algebraic language L admits empty models if and only
if L does not contain constant symbols. In particular, a prevariety K contains the
empty algebra if and only if its language does not contain a constant symbol. This
convention ensures the existence of the 0-generated free algebra over K.

We are now ready to describe the structure of limits and colimits in prevarieties.
Let K be a prevariety. Categorical products in K coincide with direct products.
Moreover, given a parallel pair of arrows f , g : A⇒ B in K, we have that h : C →
A is an equalizer of f and g if and only if h is an embedding and h[C] = {a ∈ A :
f (a) = g(a)}. Observe that if the language of K does not contain constant symbols,
then C may be empty. It is well known that all other limits can be obtained as
a combination of these two constructions. The description of colimits is slightly
more complicated. Consider a family of algebras {Ai : i ∈ I} ⊆ K and assume
without loss of generality that their universes are pairwise disjoint. For every i ∈ I
we let πi : TmK(Ai) → Ai be the unique surjective homomorphism that maps
identically Ai onto Ai. Then consider the set X :=

⋃
i∈I Ai and define

θ := CgTmK(X)
K

⋃
i∈I

Ker(πi).
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The algebra TmK(X)/θ, together with the maps pi : Ai → TmK(X)/θ that send
a ∈ Ai to a/θ, is a coproduct of {Ai : i ∈ I} ⊆ K. Observe that the maps pi need
not be injective. Moreover, it is worth remarking that the free κ-generated algebra
is a κ-th copower of the free 1-generated algebra. In general, if A is a coproduct in
K of the family {Ai : i ∈ I} and fi : Ai → B with i ∈ I are arrows in K, then we
will denote by 〈 fi : i ∈ I〉 : A→ B the map induced by the universal property of
the coproduct. In case A = TmK(X)/θ as above, the arrow 〈 fi : i ∈ I〉 is defined
by the rule

ϕ(a1, . . . , an)/θ 7−→ ϕB( fk1(a1), . . . , fkn(an))

for every ϕ(a1, . . . , an)/θ ∈ TmK(X)/θ with a1 ∈ Ak1 , . . . , an ∈ Akn .
Now, we move our attention to the other basic kind of colimit. Given a parallel

pair of arrows f , g : A⇒ B in K, we have that h : B → C is a coequalizer of f and
g if and only if it is surjective and

Ker(h) = CgBK {〈 f (a), g(a)〉 : a ∈ A}.
It is worth remarking that every surjective homomorphism in K arises as the
coequalizer of a pair of arrows. In particular, observe that every congruence
θ ∈ ConKA of A ∈ K can be seen as a subalgebra of the direct product A×A.
Keeping this in mind, θ can be associated with two homomorphisms l, r : θ ⇒ A
that send a pair 〈a, b〉 ∈ θ respectively to its left and right component. It is easy
to prove that πθ is a coequalizer of l and r. Finally, it is well known that all other
colimits can be constructed as a combination of coproducts and coequalizers.

Observe that the terminal object of K is the trivial algebra, while its initial object
is TmK(0). Therefore the initial object of K is empty if and only if the language
of K contains no constant symbols. Given two prevarieties X and Y, the functors
F : X←→ Y : G, where F sends everything to the initial object and G sends every
object to the terminal object, always form an adjunction F a G (see next subsection,
if necessary). We call the adjunctions of this kind trivial. In particular, we say that
a left (right) adjoint functor between prevarieties is trivial if it sends everything to
the initial (terminal) object.

It is worth spending some more time on a special kind of colimit constructions.
These are κ-directed colimits, i.e., colimits of diagrams indexed by posets in which
every subset of cardinality < κ has an upper bound, for a regular cardinal κ.
In varieties they are constructed as usual, by taking the disjoint union of the
factors and identifying the elements that become eventually equal. In the case
of prevarieties K the only difference is that we have to factor out the resulting
algebra by its smallest K-congruence. Remarkably, this last step can be avoided
when K is a generalized quasi-variety that can be axiomatized by generalized
quasi-equations, whose number of variables is less than κ. Then the κ-directed
colimits of families of algebras in K are obtained by just identifying elements that
become eventually equal. In particular, in quasi-varieties this is the case for usual
ℵ0-directed colimits.

2.2. Adjunctions. We will limit our discussion to locally small categories, i.e., cate-
gories whose hom-sets are ordinary sets. Recall that an adjunction between two
categories X and Y is a tuple 〈F ,G, ε, η〉 where F : X → Y and G : Y → X are
functors and η : 1X → GF and ε : FG → 1Y are natural transformations such that

1F (A) = εF (A) ◦ F (ηA) and 1G(B) = G(εB) ◦ ηG(B)
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for every A ∈ X and B ∈ Y. In this case we say that F is left adjoint to G and that
G is right adjoint to F , in symbols F a G. Moreover, η and ε are respectively the
unit and counit of the adjunction. We say that a functor is a right adjoint (resp a left
adjoint) if it is right (resp. left) adjoint to some functor. It is worth to remark that if
a functor has two right (left) adjoints, these are naturally isomorphic. Right adjoint
functors preserve limits and left adjoint functors preserve colimits. A category
equivalence between two categories X and Y is an adjunction 〈F ,G, ε, η〉 where ε
and η are natural isomorphisms. In this case the functors F and G preserve all
categorical constructions. We say that two categories are categorically equivalent
when there exists a category equivalence between them.

A hom-set adjunction between two categories X and Y is a triple 〈F ,G, µ〉 where
F : X → Y and G : Y → X are functors and µ is a natural isomorphism between
the functors:

homY(F (·), ·) : Xop × Y → Set and homX(·,G(·)) : Xop × Y → Set.

When 〈F ,G, µ〉 is a hom-set adjunction as above, we say that F is left adjoint to G
and that G is right adjoint to F , in symbols F a G.

Adjunctions and hom-set adjunctions are two sides of the same coin. To explain
why, consider an adjunction 〈F ,G, ε, η〉 between X and Y with F a G. Then for
every 〈A,B〉 ∈ Xop × Y we let

γ〈A,B〉 : homY(F (A),B)→ homX(A,G(B))

be the map that sends an arrow f to G( f ) ◦ ηA. It turns out that the global map

γ : homY(F (·), ·)→ homX(·,G(·))
is a natural isomorphism. Thus the triple 〈F ,G, γ〉 is a hom-set adjunction between
X and Y with F a G. Vice-versa consider a hom-set adjunction 〈F ,G, γ〉 between X
and Y with F a G. For every A ∈ X and B ∈ Y we define ηA := γ〈A,F (A)〉(1F (A))

and εB := γ−1
〈G(B),B〉(1G(B)). It turns out that the global maps η : 1X → GF and

ε : FG → 1Y are natural transformations and that 〈F ,G, ε, η〉 is an adjunction with
F a G. Keeping this in mind we can speak of the hom-set adjunction associated
with an adjunction and vice-versa. This justifies the usage of the same symbol a.

2.3. Locally presentable categories. For standard information on locally pre-
sentable categories we refer the reader to [3]. Let κ be a regular cardinal and
let K be a locally small category. An object A in K is κ-presentable if the functor
hom(A, ·) preserves κ-directed colimits. More explicitly, this means that for every
κ-directed diagram {Bi : i ∈ I} with colimit gi : Bi → B and for every arrow
h : A→ B the following conditions hold:
1. There is i ∈ I and an arrow p : A→ Bi such that gi ◦ p = h.
2. The map p is essentially unique, in the sense that for every other arrow q : A→
Bm such that gm ◦ q = h there is j > i, m such that fij ◦ p = fmj ◦ q, where
fij : Bi → Bj and fmj : Bm → Bj are arrows of the κ-directed diagram.

In generalized quasi-varieties the κ-presentable objects can be described as follows:

Lemma 2.1. Let κ be a regular cardinal and K be a generalized quasi-variety axiomatized
by generalized quasi-equations in less than κ variables. An algebra A ∈ K is κ-presentable
in the categorical sense if and only if it is (isomorphic to) a quotient of TmK(λ) under a
µ-generated K-congruence for some λ, µ < κ.
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Let κ be a regular cardinal and K be a locally small category. K is locally κ-
presentable if it is cocomplete, and has a set J of κ-presentable objects such that
every object in K is a κ-directed colimit of objects in J. Moreover, K is locally
presentable if it is locally κ-presentable for some regular cardinal κ.

Lemma 2.2. Generalized quasi-varieties are locally presentable categories.

Adámek and Rosický proved in [3, Theorem 1.66] the following characterization
of right adjoint functors between locally presentable categories. By Lemma 2.2 it
applies to generalized quasi-varieties as well.

Theorem 2.3 (Adámek and Rosický). A functor between locally presentable categories
is right adjoint if and only if it preserves limits and κ-directed colimits for some regular
cardinal κ.

3. The two basic deformations

In this section we describe two general methods to deform a given generalized
quasi-variety, obtaining a new generalized quasi-variety that is related to the first
one by an adjunction. In particular, it turns out that every right adjoint between
generalized quasi-varieties arises (up to natural isomorphism) as a combination of
these deformations (Theorem 6.1). Remarkably, in the particular case of category
equivalence, these deformations coincide with the ones identified by McKenzie in
[25] (see Examples 3.6 and 3.11).

The first deformation that we consider is just an infinite version of the usual
finite matrix power construction. Let X be a class of similar algebras and κ be a
cardinal. Then observe that every term ϕ ∈ Tm(κ) induces a map ϕ : Aκ → A for
every A ∈ X.

Definition 3.1. Let κ > 0 be a cardinal and X a class of similar algebras. Then
L κ

X is the algebraic language whose n-ary operations (for every n ∈ ω) are all
κ-sequences 〈ti : i < κ〉 of terms ti of the language of X built up with variables

{xj
m : 1 6 m 6 n and j < κ}.

Observe that each ti has a finite number of variables, possibly none, of each
sequence ~xm := 〈xj

m : j < κ〉 with 1 6 m 6 n. We will write ti = ti(~x1, . . . ,~xn) to
denote this fact.

Example 3.2. Consider the variety of bounded distributive lattices DL01. Examples
of basic operations of L 2

DL01
are:

〈x1, x2〉 u 〈y1, y2〉 := 〈x1 ∧ y1, x2 ∨ y2〉
〈x1, x2〉 t 〈y1, y2〉 := 〈x1 ∨ y1, x2 ∧ y2〉

¬〈x1, x2〉 := 〈x2, x1〉
1 := 〈1, 0〉
0 := 〈0, 1〉.

Observe that the first two operations are binary, the third is unary and the last two
are constants. �
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Definition 3.3. Consider an algebra A ∈ X and a cardinal κ > 0. We let A[κ] be
the algebra of type L κ

X with universe Aκ where a n-ary operation 〈ti : i < κ〉 is
interpreted as

〈ti : i < κ〉(a1, . . . , an) = 〈tAi (a1/~x1, . . . , an/~xn) : i < κ〉
for every a1, . . . , an ∈ Aκ (the notation am/~xm means that we are assigning the
tuple am of elements of A to the tuple of variables ~xm). In other words 〈ti : i <
κ〉(a1, . . . , an) is the κ-sequence of elements of A defined as follows. Consider
i < κ. Observe that only a finite number of variables occurs in ti, say

ti = ti(xα1
1

1 , . . . , x
α1

m1
1 , . . . , xαn

1
n , . . . , x

αn
mn

n ),

where α1
1, . . . , α1

m1
, . . . , αn

1 , . . . , αn
mn < κ. Then the i-th component of the sequence

〈ti : i < κ〉(a1, . . . , an) is

tAi (a1(α
1
1), . . . , a1(α

1
m1
), . . . , an(α

n
1 ), . . . , a1(α

n
mn)).

If X is a class of similar algebras, we set

X[κ] := I{A[κ] : A ∈ X}
and call it the κ-th matrix power of X.

Now, let [κ] be the map defined as follows:

A 7−→ A[κ]

f : A→ B 7−→ f [κ] : A[κ] → B[κ]

where f [κ]〈ai : i < κ〉 := 〈 f (ai) : i < κ〉, for every A,B ∈ X and every ho-
momorphism f . It is easy to check that the map f [κ] : A[κ] → B[κ] is indeed a
homomorphism.

Example 3.4. In Example 3.2 we highlighted some operations of L 2
DL01

. Let us
explain how are they interpreted in the matrix power construction. Consider
A ∈ DL01. The universe of A[2] is just the Cartesian product A× A. We have that:

〈a, b〉 u 〈c, d〉 = 〈a ∧ c, b ∨ d〉
〈a, b〉 t 〈c, d〉 = 〈a ∨ c, b ∧ d〉

¬〈a, b〉 = 〈b, a〉
1 = 〈1A, 0A〉
0 = 〈0A, 1A〉

for every 〈a, b〉, 〈c, d〉 ∈ A× A. Examples of matrix powers with infinite exponent
are technically, but not conceptually, more involved. We review one of them in
Example 6.6. �

Theorem 3.5. Let X be a generalized quasi-variety and κ > 0 a cardinal. If Y is a
generalized quasi-variety such that X[κ] ⊆ Y, then [κ] : X→ Y is a right adjoint functor.

Proof. It is not difficult to see that the map [κ] is a functor that preserves direct
products and equalizers. Since all limits can be constructed as combination of
products and equalizers, we conclude that [κ] preserves limits. In view of Theorem
2.3 it only remains to show that it preserves λ-directed colimits for some regular
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cardinal λ. To this end, let λ be a regular cardinal larger than the number of
variables occurring in the generalized quasi-equations axiomatizing X and Y. This
makes sense, since X and Y are generalized quasi-varieties. Moreover, take λ to be
larger than κ. Then consider a λ-directed diagram {Ai : i ∈ I} in X with arrows
fij : Ai → Aj when i 6 j. By the first requirement on λ, the directed colimit of this
diagram is the algebra A obtained as follows. First we consider the disjoint union
{〈a, i〉 : a ∈ Ai and i ∈ I}. Then we factor out by the quotient with respect to the
following equivalence relation

θ := {〈〈a, i〉, 〈b, j〉〉 : there is k > i, j such that fik(a) = f jk(b)}

and define operations in the natural way. Analogously, the colimit in Y of the
λ-directed diagram {A[κ]

i : i ∈ I} with arrows f [κ]ij : A[κ]
i → A

[κ]
j when i 6 j is the

algebra B obtained as follows. We first consider the disjoint union {〈~a, i〉 : ~a ∈
Aκ

i and i ∈ I}, then we factor it out by the equivalence relation

φ := {〈〈~a, i〉, 〈~b, j〉〉 : there is k > i, j such that f [κ]ik (~a) = f [κ]jk (~b)}

and finally we define operations in the natural way.
We claim that the map g : B → A[κ] defined as

g(〈~a, i〉/φ) := 〈〈~a(r), i〉/θ : r < κ〉

for every 〈~a, i〉/φ ∈ B is an isomorphism. It is very easy to see that g is well
defined. To see that it is injective, we reason as follows. Suppose that g(〈~a, i〉/φ) =

g(〈~b, j〉/φ). This means that for every r < κ there is kr > i, j such that fikr (~a(r)) =
f jkr (

~b(r)). But since our diagram is λ-directed and κ < λ, there is k ∈ I such that
kr 6 k for every r < κ. In particular, this implies that fik(~a(r)) = f jk(~b(r)) for every

r < κ and, therefore, that f [κ]ik (~a) = f [κ]jk (~b). This means that 〈~a, i〉/φ = 〈~b, j〉/φ, as
desired.

Then we turn to show that g is surjective. Consider an element 〈〈ar, ir〉/θ :
r < κ〉 ∈ A[κ]. Again, since our diagram is λ-directed and κ < λ, there is k ∈ I
such that k > ir for every r < κ. In particular, this implies that 〈〈ar, ir〉/θ : r <

κ〉 = 〈〈 firk(ar), k〉/θ : r < κ〉. Now observe that the element~b := 〈 firk(ar) : r < κ〉
belongs to A[κ]

k . Moreover, we have that g(〈~b, k〉/φ) = 〈〈 firk(ar), k〉/θ : r < κ〉, as
desired.

To complete the proof of the claim, it remains to show that g is a homo-
morphism. To this end, let ϕ be a basic n-ary operation of Y and consider
〈~a1, i1〉/φ, . . . , 〈~an, in〉/φ ∈ B. Consider an index j > i1, . . . , in. Then for every
s < κ, we have the following (where ϕs is the s-th component of ϕ):

ϕA
[κ]
(g〈~a1, i1〉/φ, . . . , g〈~an, in〉/φ)(s)

=ϕA
[κ]
(〈〈~a1(r), i1〉/θ : r < κ〉, . . . , 〈〈~an(r), in〉/θ : r < κ〉)(s)

=ϕA
[κ]
(〈〈 fi1 j(~a1(r)), j〉/θ : r < κ〉, . . . , 〈〈 fin j(~an(r)), j〉/θ : r < κ〉)(s)

=ϕAs (~x1/〈〈 fi1 j(~a1(r)), j〉/θ : r < κ〉, . . . ,~xn/〈〈 fin j(~an(r)), j〉/θ : r < κ〉)

=〈ϕAj
s (~x1/ fi1 j(~a1), . . . ,~xn/ fin j(~an)), j〉/θ
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=〈ϕA
[κ]
j ( f [κ]i1 j (~a1), . . . , f [κ]in j (~an))(s), j〉/θ

=g(〈ϕA
[κ]
j ( f [κ]i1 j (~a1), . . . , f [κ]in j (~an)), j〉/φ)(s)

=g(ϕB(〈 f [κ]i1 j (~a1), j〉/φ, . . . , 〈 f [κ]in j (~an), j〉/φ))(s)

=g(ϕB(〈~a1, i1〉/φ, . . . , 〈~an, in〉/φ))(s).

This concludes the proof of our claim.
To prove that [κ] preserves λ-directed colimits, it only remains to show that

g ◦ qi = p[κ]i for every i ∈ I, where qi : A[κ]
i → B and pi : Ai → A are the maps

associated with the colimits B and A respectively. But this is an easy consequence
of the fact that

qi(~a) := 〈~a, i〉/φ and pi(a) := 〈a, i〉/θ

for every ~a ∈ Aκ
i and a ∈ Ai. Therefore we can apply Theorem 2.3, concluding

that [κ] is a right adjoint functor. �

Example 3.6 (Finite Exponent). It is not difficult to see that if X is a class of similar
algebras and κ > 0, then the functor [κ] : X→ X[κ] is a category equivalence (see
for example [25, Theorem 2.3.(i)] where this is stated under the assumption that
κ is finite). Moreover, when κ is finite, it happens that if X is a prevariety (or a
generalized quasi-variety, a quasi-variety, a variety), then so is X[κ]. However this
is not the case in general: when κ is infinite it may happen that X is a prevariety
and that [κ] : X → Y fails to be a category equivalence for every prevariety Y

containing X[κ]. In particular, this implies that X[κ] can fail to be a prevariety, even
if X is one.

To construct the necessary counterexample, we reason as follows. First observe
that if K is a prevariety, then an infinite algebra A ∈ K has cardinality λ if and only
if the following conditions hold:
1. The set hom(B,A) has cardinality 6 λ for every finitely generated algebra
B ∈ K.

2. There is a finitely generated algebra B ∈ K such that hom(B,A) has exactly
cardinality λ.

To see this, observe if A has infinite cardinality λ and B is n-generated, then the
cardinality of hom(B,A) is less or equal than λn = λ. Moreover there is a finitely
generated algebra B, e.g., the one-generated free algebra, such that hom(B,A)
has cardinality λ. This justifies the equivalence between having cardinality λ and
satisfying conditions 1 and 2.

Together with the fact that the notion of a finitely generated algebra is categorical
in prevarieties [25, Theorem 3.1.(5)] and that category equivalences preserve the
cardinality of hom-sets, this implies that category equivalences preserve also
infinite cardinalities.1 We will use this fact to construct the desired counterexample.
Consider a generalized quasi-variety X of finite type and an infinite cardinal κ. We
know that the free algebra TmX(κ) has cardinality κ and that its matrix power
TmX(κ)

[κ] has cardinality κκ . Since κ < κκ , we conclude that the functor [κ] does

1This contrasts with the fact that category equivalences between prevarieties do not preserve the
cardinality of finite algebras. Nevertheless, they preserve the fact of being finite [25, Theorem 3.1.(7)].
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not preserve infinite cardinalities. Thus [κ] : X→ Y is not a category equivalence,
for every prevariety Y containing X[κ]. �

In order to describe the second kind of deformation, we need to introduce a
new concept:

Definition 3.7. Let X be a class of similar algebras and L ⊆ LX. A set of equations
θ ⊆ Eq(LX, 1) is compatible with L in X if for every n-ary operation ϕ ∈ L we
have that

θ(x1) ∪ · · · ∪ θ(xn) �X θ(ϕ(x1, . . . , xn)).

In other words θ is compatible with L in X when the solution sets of θ in X are
closed under the interpretation of the operations and constants in L .

Now we will explain how is it possible to build a functor out of a set of
equations θ compatible with L ⊆ LX. For every A ∈ X, we let θL (A) be the
algebra of type L whose universe is

θL (A) := {a ∈ A : A � θ(a)}
equipped with the restriction of the operations in L . We know that θL (A) is
well-defined, since its universe is closed under the interpretation of the operations
in L and contains the interpretation of the constants in L . Observe that by
definition of compatibility θL (A) can be empty if and only if L contains no
constant symbol.

Given a homomorphism f : A→ B in X, we denote its restriction to θL (A) by

θL ( f ) : θL (A)→ θL (B).

It is easy to see that θL ( f ) is a well-defined homomorphism. Now, consider the
following class of algebras:

θL (X) := I{θL (A) : A ∈ X}.
Let θL : X→ θL (X) be the map defined by the following rule:

A 7−→ θL (A)

f : A→ B 7−→ θL ( f ) : θL (A)→ θL (B).

It is easy to check that θL is a functor.

Theorem 3.8. Let X be a generalized quasi-variety and θ ⊆ Eq(LX, 1) a set of equations
compatible with L ⊆ LX. If Y is a generalized quasi-variety such that θL (X) ⊆ Y, then
θL : X→ Y is a right adjoint functor.

Proof. By Theorem 2.3 we know that the functor θL is a right adjoint if and only
if it preserves limits and κ-directed colimits for some regular cardinal κ. We begin
by proving that θL preserves limits. It will be enough to show that it preserves
direct products and equalizers. To do this, consider a family {Ai : i ∈ I} ⊆ X. It is
easy to see that

θL (∏
i∈I
Ai) = ∏

i∈I
θL (Ai)

and that projections are sent to projections. As to equalizers, the situation is
analogous. Consider two homomorphisms f , g : A⇒ B in X. Their equalizer is
the inclusion map e : C → A, where C is the subalgebra of A with universe {a ∈
A : f (a) = g(a)}. Keeping this in mind, it is clear that θL (e) : θL (C)→ θL (A) is
an inclusion map, whose range consists of objects on which θL ( f ) and θL (g) are
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identical. Therefore it only remains to prove that θL (e) covers all the elements on
which θL ( f ) and θL (g) coincide. Pick a ∈ θL (A) such that θL ( f )(a) = θL (g)(a).
This means that f (a) = g(a) and, therefore, that a ∈ C. Moreover a is a solution
to all the equations in θ; therefore we obtain that a ∈ θL (C). This concludes the
proof that θL preserves limits.

It only remains to prove that θL preserves κ-directed colimits for some regular
cardinal κ. Let κ be a regular cardinal larger than the number of variables
occurring in the generalized quasi-equations axiomatizing X. Consider a κ-directed
diagram {Ai : i ∈ I} with arrows fij : Ai → Aj when i 6 j in X. Its directed
colimit is the algebra A obtained as follows. We first consider the disjoint union
{〈a, i〉 : a ∈ Ai and i ∈ I}. Then we factor out by the following equivalence
relation

φ := {〈〈a, i〉, 〈b, j〉〉 : there is k > i, j such that fik(a) = f jk(b)}

and define operations in the natural way. It is now clear that the algebra θL (A) is
obtained analogously out of the κ-directed diagram {θL (Ai) : i ∈ I} and θL ( fij)
for i 6 j. Therefore the directed colimit of this diagram is the quotient of θL (A)
with respect to its smallest Y-congruence. But this congruence is the identity,
because θL (A) ∈ Y. Therefore we conclude that θL (A) is the directed colimit of
the diagram as desired. �

A familiar instance of the above construction is the following:

Example 3.9 (Subreducts). Let X be a (generalized) quasi-variety and L ⊆ LX. An
L -subreduct of an algebra A ∈ X is a subalgebra of the L -reduct of A. From [16,
Proposition 2.3.19] it is easy to infer that the class Y of L -subreducts of algebras
in X is a (generalized) quasi-variety. For quasi-varieties this fact was proved by
Maltsev [24]. Consider the forgetful functor U : X → Y. It is easy to see that
U = θL where θ = ∅. From Theorem 3.8 it follows that U has a left adjoint. �

In the next examples we illustrate how the two deformations introduced so far
can be combined to describe right adjoint functors.

Example 3.10 (Kleene Algebras). A Kleene algebra A = 〈A,u,t,¬, 0, 1〉 is a De
Morgan algebra in which the equation x u ¬x 6 y t ¬y holds. We denote by KA
the variety of Kleene algebras and by DL01 the variety of bounded distributive
lattices. In [10] (but see also [18]) a way of constructing Kleene algebras out of
bounded distributive lattices is described. More precisely, given A ∈ DL01, the
Kleene algebra G(A) has universe

G(A) := {〈a, b〉 ∈ A2 : a ∧ b = 0}
and operations defined as in Example 3.4. Moreover, given a homomorphism
f : A → B in DL01, the map G( f ) : G(A) → G(B) is defined by replicating f
component-wise. It turns out that G : DL01 → KA is a right adjoint functor [10,
Theorem 1.7].

It is worth remarking that DL01 and KA are not categorically equivalent and,
therefore, G is not a category equivalence. This follows from the following
observations:
1. Category equivalences between prevarieties preserve the fact of being a non-

trivial subdirectly irreducible algebra.
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2. DL01 has, up to isomorphism, only one non-trivial subdirectly irreducible
member (the two-element chain), while KA has two (the two- and the three-
element chains).
In order to decompose G into a combination of our two deformations, we reason

as follows. First consider the matrix power functor [2] : DL01 → DL
[2]
01 . Recall from

Example 3.6 that it is a category equivalence and that DL
[2]
01 is a variety. Now

consider the following sublanguage L of the language of DL[2]01 defined in Example
3.2. Consider also the set of equations

θ := {〈x1 ∧ x2, x1 ∧ x2〉 ≈ 〈0, 0〉} ⊆ Eq(L
DL

[2]
01

, 1).

It is easy to see that θ is compatible with L . For example the compatibility of θ
w.r.t. u amounts to the following condition: For every A ∈ DL01 and 〈a, b〉, 〈c, d〉 ∈
A× A, if

〈x1 ∧ x2, x1 ∧ x2〉A[2]
(〈a, b〉) = 〈0, 0〉 and 〈x1 ∧ x2, x1 ∧ x2〉A[2]

(〈c, d〉) = 〈0, 0〉,
then

〈x1 ∧ x2, x1 ∧ x2〉A[2]
(〈a, b〉 uA[2] 〈c, d〉) = 〈0, 0〉.

The condition above is equivalent to the following elementary fact: For every
A ∈ DL01 and 〈a, b〉, 〈c, d〉 ∈ A× A,

if a ∧ b = 0 and c ∧ d = 0, then (a ∧ c) ∧ (b ∨ d) = 0.

This shows that θ is compatible with u. A similar argument shows that θ is
compatible with the whole L .

Moreover, for every A ∈ DL01 and a, b ∈ A we have that

〈a, b〉 ∈ G(A)⇐⇒a ∧ b = 0

⇐⇒〈a ∧ b, a ∧ b〉 = 〈0, 0〉

⇐⇒A[2] � 〈x1 ∧ x2, x1 ∧ x2〉 ≈ 〈0, 0〉Ja, bK

⇐⇒〈a, b〉 ∈ θL (A).

Hence we conclude that θL (A[2]) = G(A) ∈ KA for every A ∈ DL
[2]
01 . But this

implies that θL : DL[2]01 → KA is a right adjoint functor by Theorem 3.8. Finally,
the functor G coincides with the composition θL ◦ [2] as desired. Observe that we
showed that G is the composition of two right adjoint functors. Thus we obtained a
new and purely combinatorial proof of the fact that G is a right adjoint functor. �

Before concluding this section, we show that the deformations described until
now can be applied to decompose equivalence functors between prevarieties. This
will make the connection with McKenzie’s work [25] explicit. To this end, let us
recall the definition of a special version of the θL construction.

Example 3.11 (Idempotent and Invertible Terms). Suppose that X is a prevariety and
σ(x) a unary term. We say that σ(x) is idempotent if X � σσ(x) ≈ σ(x) and that
σ(x) is invertible if there are an n-ary term t and unary terms t1, . . . , tn such that

X � t(σt1(x), . . . , σtn(x)) ≈ x.

Given a unary and idempotent term σ(x) of X, we define

L := {σt : t is a basic symbol of X[1]}
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and θ := {x ≈ σ(x)}. Moreover, we define

X(σ) := θL (X[1]).

McKenzie proved that the functor σ : X→ X(σ) defined as the composition θL ◦ [1]
is a category equivalence [25, Theorem 2.2.(ii)]. Moreover, if X is a prevariety (or a
generalized quasi-variety, a quasi-variety, a variety), then so is X(σ). Following
the literature, we will write A(σ) instead of σ(A) for every A ∈ X. �

To introduce McKenzie’s characterization of category equivalence, we restrict
to prevarieties without constant symbols. It should be kept in mind that this
restriction is somehow immaterial, since, given a prevariety K, we can always
replace the constant symbols of K by constant unary operations obtaining a new
prevariety K′ whose only difference with K is the presence of the empty algebra.

We need to recall some basic concepts [6, Definitions 4.76 and 4.77]:

Definition 3.12. Let X and Y be prevarieties without constant symbols. An
interpretation of X in Y is a map τ : LX → Tm(LY, ω) such that:
1. τ sends n-ary basic symbols to at most n-ary terms for every n > 1.
2. Aτ := 〈A, {τ (λ) : λ ∈ LX}〉 ∈ X for every A ∈ Y.

Definition 3.13. Two prevarieties X and Y without constant symbols are term-
equivalent if there are interpretations τ and ρ of X in Y and of Y in X respectively
such that for every A ∈ X and B ∈ Y,

(Aρ)τ = A and (Bτ )ρ = B.

When two prevarieties X and Y without constant symbols are term-equivalent,
the map that sends A ∈ X to Aρ ∈ Y and that is the identity on arrows is a
category equivalence Fρ : X→ Y. Then we have the following [25, Theorem 6.1]:

Theorem 3.14 (McKenzie). If G : X→ Y is a category equivalence between prevarieties
without constant symbols, then there are a natural number n > 0 and a unary idempotent
and invertible term σ(x) of X[n] such that
1. Y is term-equivalent to X[n](σ) under some interpretation ρ of Y in X[n](σ).
2. The functors G and Fρ ◦ (σ ◦ [n]) are naturally isomorphic.

4. From translations to right adjoints

As we mentioned, our aim is to develop a correspondence between the adjunc-
tions between two generalized quasi-varieties X and Y and the translations between
the equational consequences relative to X and Y. The first step we make in this
direction is to introduce a precise notion of translation between relative equational
consequences. Subsequently, we use these translations to construct right adjoint
functors (Theorem 4.5). To simplify the notation, we will assume throughout this
section that X and Y are two fixed generalized quasi-varieties (possibly in different
languages).

Definition 4.1. Consider a cardinal κ > 0. A κ-translation τ of LX into LY is a
map from LX to L κ

Y that preserves the arities of function symbols.

In other words, if a basic symbol ϕ ∈ LX is n-ary, we have that τ (ϕ) = 〈ti : i < κ〉
for some terms ti = ti(~x1, . . . ,~xn) of language of Y, where ~xm = 〈xj

m : j < κ〉. It is
worth remarking that τ sends constant symbols to sequences of constant symbols.
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Thus if LX contains a constant symbol, then also LY must contain one for a
translation to exist.

A κ-translation τ extends naturally to arbitrary terms. Let us explain briefly
how. Given a cardinal λ, let Tm(LX, λ) be the set of terms of X written with
variables in {xj : j < λ} and let Tm(LY, κ × λ) be the set of terms of Y written
with variables in {xi

j : j < λ, i < κ}. We define recursively a map

τ∗ : Tm(LX, λ)→ Tm(LY, κ × λ)κ .

For variables and constants we set

τ∗(xj) := 〈xi
j : i < κ〉, for every j < λ

τ∗(c) := τ (c).

For complex terms, let ψ ∈ LX be n-ary and ϕ1, . . . , ϕn ∈ Tm(LX, λ). We have
that τ (ψ) = 〈ti : i < κ〉 where ti = ti(~x1, . . . ,~xn). Keeping this in mind, we set

τ∗(ψ(ϕ1, . . . , ϕn))(i) := ti(τ∗(ϕ1)/~x1, . . . , τ∗(ϕn)/~xn) for every i < κ.

The map τ∗ can be lifted to sets of equations yielding a new function

τ ∗ : P(Eq(LX, λ))→ P(Eq(LY, κ × λ))

defined by the following rule:

Φ 7−→ {τ∗(ε)(i) ≈ τ∗(δ)(i) : i < κ and ε ≈ δ ∈ Φ}.

Definition 4.2. Consider a cardinal κ > 0. A contextual κ-translation of �X into �Y
is a pair 〈τ , Θ〉 where τ is a κ-translation of LX into LY and Θ(~x) ⊆ Eq(LY, κ)
is a set of equations written with variables among {xi : i < κ} that satisfies the
following conditions:

1. For every cardinal λ and equations Φ ∪ {ε ≈ δ} ⊆ Eq(LX, λ) written with
variables among {xj : j < λ},

if Φ �X ε ≈ δ, then τ ∗(Φ) ∪
⋃
j<λ

Θ(~xj) �Y τ
∗(ε ≈ δ).

2. For every n-ary operation ψ ∈ LX,

Θ(~x1) ∪ · · · ∪Θ(~xn) �Y Θ(τ∗ψ(x1, . . . , xn)).

In 1 and 2 it is intended that ~xj = 〈xi
j : i < κ〉. The set Θ is the context of the

contextual translation 〈τ , Θ〉.
A contextual κ-translation 〈τ , Θ〉 of �X into �Y is non-trivial2 provided that if

there is a (non-empty) sequence ~ϕ ∈ Tm(LY, 0)κ of constant symbols such that
Y � Θ(~ϕ), then there is i0 < κ and sequences of variables

~x = 〈xi : i < κ〉 and ~y = 〈yi : i < κ〉

such that
Θ(~x) ∪Θ(~y) 2Y xi0 ≈ yi0 .

2This condition of non-triviality is designed in order to identify contextual translations that corre-
spond to non-trivial adjunctions. This will become clear in the proof of Theorem 4.5.
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Several translations between logics classically considered in the literature pro-
vide examples of this general notion of contextual translation between relative
equational consequences. However some of these translations between logics send
variables x to complex terms ϕ, while we do not allow this in our definition of
contextual translation. The behaviour of variables is then described by adding the
equation x ≈ ϕ to the context of the contextual translation.

Example 4.3 (Heyting and Interior Algebras). As shown by Gödel in [15] (see also
[13, 23, 27]), it is possible to interpret the intuitionistic propositional calculus IPC
into the consequence relation associated with the global modal system S4 [20, 21].
Since these two logics are algebraizable [8] with equivalent algebraic semantics
the variety of Heyting algebras HA and of interior algebras IA respectively, this
interpretation can be lifted from terms to equations. More precisely, let τ be the
1-translation of LHA into LIA defined as follows:

x ? y 7−→ x ? y ¬x 7−→ �¬x x → y 7−→ �(x → y)

for ? ∈ {∧,∨}. The interpretation of IPC into S4 can now be presented as
follows:

Γ `IPC ϕ⇐⇒ στ∗(Γ) `S4 στ∗(ϕ) (1)

for every Γ ∪ {ϕ} ⊆ Tm(LHA, λ), where σ is the substitution sending every
variable x to its necessitation �x. In order to present this translation in our
framework, we have to deal with the fact that we allow only translations that send
variables to variables. As we mentioned, this problem is overcome by introducing
a context in the premises. To explain how, we recall that the terms of Tm(LHA, λ)
are written with variables among {xj : j < λ}. Then we have that:

στ∗(Γ) `S4 στ∗(ϕ)⇐⇒ τ∗(Γ) ∪ {xj ↔ �xj : j < λ} `S4 τ∗(ϕ). (2)

The left-to-right direction of (2) follows from the fact that the algebraic meaning of
xj ↔ �xj is xj ≈ �xj. To prove the other direction, suppose that the right-hand
deduction holds. Then by structurality we can apply the substitution σ to it. This
fact, together with ∅ `S4 �x ↔ ��x, yields the desired conclusion. Now, using
the completeness of IPC and S4 with respect to the corresponding equivalent
algebraic semantics, we obtain that

Φ �HA ε ≈ δ⇐⇒ τ ∗(Φ) ∪
⋃
j<λ

Θ(xj) �IA τ
∗(ε ≈ δ) (3)

for every Φ ∪ {ε ≈ δ} ⊆ Eq(LHA, λ), where Θ(x) = {x ≈ �x}. Observe that (3)
implies condition 1 of Definition 4.2. Moreover, observe that in this case condition
2 of the same definition amounts to the following deductions, which are all easy
to check (the first and the last are trivial, since IA � �x ≈ ��x):

x ≈ �x �IA �¬x ≈ ��¬x

x ≈ �x, y ≈ �y �IA x ? y ≈ �(x ? y)

x ≈ �x, y ≈ �y �IA �(x → y) ≈ ��(x → y)

for each ? ∈ {∧,∨}. Therefore we conclude that 〈τ , Θ〉 is a contextual translation
of �HA into �IA. �
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Example 4.4 (Heyting and Boolean Algebras). The same trick can be applied to
subsume Kolmogorov’s interpretation of classical propositional calculus CPC into
IPC [19] in our framework. Let τ be the 1-translation defined as follows:

0 7−→ 0 1 7−→ 1 ¬x 7−→ ¬x x ? y 7−→ ¬¬(x ? y)

for every ? ∈ {∧,∨,→}. The original translation of Kolmogorov states that

Γ `CPC ϕ⇐⇒ στ∗(Γ) `IPC στ∗(ϕ)

for every Γ ∪ {ϕ} ⊆ Tm(L , λ), where σ is the substitution sending every variable
x to its double negation ¬¬x. Combining it with the observation that ∅ `IPC
¬x ↔ ¬¬¬x, it is easy to see that 〈τ , Θ〉 with Θ = {x ≈ ¬¬x} is a contextual
translation of �BA into �HA, where BA is the variety of Boolean algebras. �

The importance of non-trivial contextual κ-translations of �X into �Y is that
they correspond to non-trivial right adjoint functors from Y to X. Notice that right
adjoints reverse the direction of contextual translations and vice-versa. We now
proceed to establish one half of this correspondence by showing how to construct
a right adjoint functor out of a contextual translation. Consider a non-trivial
contextual κ-translation 〈τ , Θ〉 of �X into �Y. Then consider the set:

L := {τ (ψ) : ψ ∈ LX} ⊆ L κ
Y. (4)

Observe that L is a sublanguage of the language of the matrix power Y[κ]. Then
consider the set

θ := {~ε ≈ ~δ : ε ≈ δ ∈ Θ}
where~ε and ~δ are the κ-sequences constantly equal to ε and δ respectively. Observe
that θ is a set of identities between κ-sequences of terms of Y in κ variables. Now,
κ-sequences of terms of Y in κ-many variables can be viewed as unary terms of the
matrix power Y[κ]. Thus θ can be viewed as a set of equations in one variable in the
language of Y[κ]. Hence we have the three basic ingredients of our construction: a
matrix power Y[κ], a sublanguage L ⊆ L κ

Y, and a set of equations θ ⊆ Eq(L κ
Y, 1).

There is still a technicality we must take into account: when κ is infinite the
matrix power Y[κ] may fail to be a generalized quasi-variety. Let K be the class of
algebras defined as follows:

K :=


Q(Y[κ]) if X and Y are quasi-varieties

and CgTmY(κ)
Y (Θ) is finitely generated

GQλ(Y
[κ]) otherwise, where λ is infinite and Uλ(X) = X

where the expressions Q and GQλ have been introduced at pag. 3. Observe that
in the above definition λ is not uniquely determined, but any choice will be
equivalent for our purposes.

Theorem 4.5. Let X and Y be generalized quasi-varieties, let 〈τ , Θ〉 be a non-trivial
contextual κ-translation of �X into �Y, and let K be the class just introduced. The maps
[κ] : Y → K and θL : K→ X defined above are right adjoint functors. In particular, the
composition θL ◦ [κ] : Y → X is a non-trivial right adjoint.

Proof. Observe that K is a generalized quasi-variety. Therefore we can apply
Theorem 3.5, yielding that [κ] : Y → K is a right adjoint functor. Now we turn to
prove the same for θL . We will detail the case where X and Y are quasi-varieties
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and CgTmY(κ)
Y (Θ) finitely generated, since the other case is analogous. Since

Y is a quasi-variety and CgTmY(κ)
Y (Θ) is finitely generated, there is a finite set

{〈αi, βi〉 : i < n} ⊆ Θ such that {〈αi, βi〉 : i < n} =||=Y Θ. It is easy to see that

{~αi ≈ ~βi : i < n} =||=Y[κ] θ (5)

where~αi and ~βi are the κ-sequences constantly equal to αi and βi respectively.
Now from condition 2 of Definition 4.2 it follows that θ is compatible with

L in Y[κ], where L is the language defined in (4). From (5) we know that this
compatibility condition can be expressed by a set of deductions, whose antecedent
is finite, of the equational consequence relative to Y[κ], i.e.,⋃

j6m
{~αi ≈ ~βi : i < n}(~xj) �Y[κ] θ(τ (ψ)(~x1, . . . ,~xn))

for every m-ary ψ ∈ L . In particular, this implies that θ is still compatible with L

in K (recall that K is the quasi-variety generated by Y[κ]).
We claim that θL (A) ∈ X for every A ∈ K. To prove this, consider any finite

deduction
ϕ1 ≈ ψ1, . . . , ϕm ≈ ψm �X ε ≈ δ.

Let x1, . . . , xp be the variables that occur in it. From condition 1 of Definition 4.2 it
follows that

{τ∗(ϕt) ≈ τ∗(ψt) : t 6 m} ∪
⋃
j6p

θ(~xj) �Y[κ] τ∗(ε) ≈ τ∗(δ)

where ~xj = 〈xi
j : i < κ〉. Thanks to (5) the above deduction can be expressed by a

collection of deductions, whose antecedent is finite, of the equational consequence
relative to Y[κ], i.e.,

{τ∗(ϕt) ≈ τ∗(ψt) : t 6 m} ∪
⋃
j6p
{~αi ≈ ~βi : i < n}(~xj) �Y[κ] τ∗(ε) ≈ τ∗(δ).

Since K is the quasi-variety generated by Y[κ], we know that the above deduction
persists in K. Together with the fact that {~αi ≈ ~βi : i < n} ⊆ θ, this implies that
for every A ∈ K and every a1, . . . , ap ∈ θL (A), we have that:

if A � τ∗(ϕ1) ≈ τ∗(ψ1), . . . , τ∗(ϕm) ≈ τ∗(ψm)Ja1, . . . , apK,

then A � τ∗(ε) ≈ τ∗(δ)Ja1, . . . , apK.

But this means exactly that

if θL (A) � ϕ1 ≈ ψ1, . . . , ϕm ≈ ψmJa1, . . . , apK,

then θL (A) � ε ≈ δJa1, . . . , apK.

Thus we showed that θL (A) satisfies every quasi-equation that holds in X. Since X
is a quasi-variety, we conclude that θL (A) ∈ X. This establishes our claim. Hence
we can apply Theorem 3.8, yielding that θL : K→ X is a right adjoint functor. We
conclude that θL ◦ [κ] : Y → X is a right adjoint functor.

It only remains to prove that θL ◦ [κ] is non-trivial, i.e., that it does not send
every algebra to the trivial one. First consider the case where there is no sequence
~ϕ ∈ Tm(LY, 0)κ of constant symbols such that Y � Θ(~ϕ). Then consider the free
algebra TmY(0). We have that θL (TmY(0)[κ]) = ∅, otherwise the equations
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Θ would have a constant solution (which is not the case). Thus in this case the
functor θL ◦ [κ] is non-trivial. Then consider the case where there is a non-empty
sequence ~ϕ ∈ Tm(LY, 0)κ such that Y � Θ(~ϕ). Since 〈τ , Θ〉 is non-trivial, we have
that

Θ(~x) ∪Θ(~y) 2Y xi ≈ yi.

This means that there is an algebra A ∈ Y and sequences~a,~c ∈ Aκ such that that
~a,~c ∈ θL (A[κ]) and ~a 6= ~c. Thus the algebra θL (A[κ]) has at least two elements
and, therefore, is non-trivial as desired. �

If we apply the above construction to Gödel and Kolmogorov’s translations, we
obtain some well-known transformations:

Example 4.6 (Open and Regular Elements). Given A ∈ IA, an element a ∈ A is
open if �a = a. The set of open elements Op(A) of A is closed under the lattice
operations and contains the bounds. Moreover we can equip it with an implication
( and with a negation ∼ defined for every a, b ∈ Op(A) as follows:

a( b := �A(a→A b) and ∼ a := �A¬Aa.

It is well known that

Op(A) := 〈Op(A),∧,∨,(,∼, 0, 1〉

is a Heyting algebra. Now, every homomorphism f : A → B between interior
algebras restricts to a homomorphism f : Op(A) → Op(B). Therefore the map
Op: IA → HA can be regarded as a functor. As the reader may have guessed, it
is in fact the right adjoint functor induced by Gödel’s translation of IPC into S4
(Example 4.3).

A similar correspondence arises from Kolmogorov’s translation of CPC into
IPC. More precisely, given A ∈ HA, an element a ∈ A is regular if ¬¬a = a. It is
well known that the set of regular elements Reg(A) of A is closed under ∧,¬ and
→ and contains the bounds. Moreover we can equip it with a new join t defined
for every a, b ∈ Reg(A) as follows:

a t b := ¬A¬A(a ∨ b).

It is well known that

Reg(A) := 〈Reg(A),∧,t,→,¬, 0, 1〉

is a Boolean algebra. Now, every homomorphism f : A → B between Heyting
algebras restricts to a homomorphism f : Reg(A)→ Reg(B). Therefore the map
Reg : HA → BA can be regarded as a functor, which is exactly the right adjoint
functor induced by Kolmogorov’s translation (Example 4.4).

The reader may wonder how the left adjoints to Op and Reg look like. We
detail only the construction of the left adjoint to Op, since a similar construction
works for Reg as well. To this end, let 〈τ , Θ〉 be the contextual translation arising
from Gödel’s translation of IPC into S4 (Example 4.3). Then consider A ∈ HA.
Let θ be the kernel of the natural surjective homomorphism p : Tm(LHA, A)→ A.
We denote by θA the least IA-congruence of Tm(LIA, A) containing the set

τ ∗(θ) ∪ {〈a,�a〉 : a ∈ A}.
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Finally, we define F (A) := Tm(LIA, A)/θA. It is clear that F (A) ∈ IA. Now,
consider a homomorphism f : A→ B in HA. We let F ( f ) : F (A)→ F (B) be the
map defined for every ϕ(~a) ∈ Tm(LIA, A) as

F ( f )(ϕ(~a)/θA) = ϕ( f (~a))/θB .

It turns out that F ( f ) : F (A)→ F (B) is a well-defined homomorphism. Indeed
F is a functor, which is left adjoint to Op. This construction shows that the left
adjoint to Op can be fully described in terms of the contextual translation 〈τ , Θ〉.
A general formulation of this observation will be given in Corollary 6.2. �

5. From right adjoints to translations

In the previous section we described one half of the correspondence between
contextual translations and adjunctions, namely how to build an adjunction out of
a contextual translation. Now we provide the other half, showing how to construct
a contextual translation (between relative equational consequences) out of an
adjunction (between generalized quasi-varieties). To this end, in this section we will
work with a fixed (but arbitrary) non-trivial left adjoint functor F : X→ Y between
generalized quasi-varieties. Our goal is to construct a contextual translation of �X
into �Y. We will rely on the following observation:

Lemma 5.1. Let F : X → Y be a non-trivial left adjoint functor between generalized
quasi-varieties. The universe of F (TmX(1)) is non-empty.

Proof. Suppose towards a contradiction that F (TmX(1)) = ∅. Then for every
A ∈ Y, there is a unique homomorphism F (TmX(1)) → A. Since F a G, this
means that there is a unique homomorphism TmX(1)→ G(A) for every A ∈ Y.
Hence G(A) is the trivial algebra, for every A ∈ Y. But this contradicts the
assumption that F is non-trivial. �

Now we construct the announced contextual translation 〈τ , Θ〉 out of F : X→ Y.
By Lemma 5.1 we know that F (TmX(1)) 6= ∅. Then we can choose a cardinal
κ > 0 and a surjective homomorphism π1 : TmY(κ)→ F (TmX(1)). Let Θ be the
kernel of π and observe that it can be viewed as a set of equations in Eq(LY, κ).
This is context of our contextual translation.

In order to construct the κ-translation τ of LX into LY, we do the following.
Consider a cardinal λ > 0. Since F preserves copowers and the algebra TmX(λ)
is the λ-th copower of TmX(1), we know that F (TmX(λ)) is the λ-th copower
of F (TmX(1)). Keeping in mind how coproducts look like in prevarieties (see
Subsection 2.1), we can identify F (TmX(λ)) with the quotient of the free algebra
TmY(κ × λ) with free generators {xi

j : i < κ, j < λ} under the Y-congruence

generated by
⋃

j<λ Θ(~xj) where ~xj = 〈xi
j : i < κ〉.

The above construction can be carried out also for λ = 0 as follows. Recall
that F preserves initial objects, since these are special colimits. Thus we can
assume that F (TmX(0)) = TmY(0). Now we have that TmY(0) is exactly the
quotient of TmY(κ × 0) under the Y-congruence generated by the union of zero-
many copies of Θ, i.e., under the identity relation. Thus we identify F (TmX(λ))
with a quotient of TmY(κ × λ) for every cardinal λ. Accordingly, we denote by
πλ : TmY(κ × λ)→ F (TmX(λ)) the corresponding canonical map.
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Definition 5.2. Let λ be a cardinal and ϕ ∈ Tm(LX, λ). We denote also by
ϕ : TmX(1)→ TmX(λ) the unique homomorphism that sends x to ϕ, where x is
the free generator of TmX(1).

We are finally ready to construct the κ-translation τ of LX into LY. Consider an
n-ary basic operation ψ ∈ LX. By the above definition it can be viewed as an arrow
ψ : TmX(1)→ TmX(n). Since πn is surjective and TmY(κ) is onto-projective in
Y, there is a homomorphism

τ (ψ) : TmY(κ)→ TmY(κ × n)

that makes the following diagram commute:

TmY(κ)

π1

��τ (ψ)

��

F (TmX(1))

F (ψ)
��

TmY(κ × n)
πn
// F (TmX(n))

(6)

The map τ (ψ) can be identified with its values on the generators {xi : i < κ} of
TmY(κ). In this way it becomes a κ-sequence

〈τ (ψ)(xi) : i < κ〉
of terms in variables {xi

j : i < κ, 1 6 j 6 n}.
Let τ be the κ-translation of LX into LY obtained by applying this construction

to every ψ ∈ LX. Hence we constructed a pair 〈τ , Θ〉, where τ is a κ-translation
of LX into LY and Θ ⊆ Eq(LY, κ).

Theorem 5.3. Let F : X → Y be a non-trivial left adjoint functor between generalized
quasi-varieties. The pair 〈τ , Θ〉 defined above is a non-trivial contextual translation of �X
into �Y.

Proof. Consider a cardinal λ. We know that τ can be extended to a function
τ∗ : Tm(LX, λ)→ Tm(LY, κ × λ)κ , where the terms Tm(LX, λ) and Tm(LY, κ ×
λ) are built respectively with variables among {xj : j < λ} and {xi

j : i < κ, j < λ}.
Then consider ϕ ∈ Tm(LX, λ). Observe that τ∗(ϕ) is a κ-sequence of terms of Y
in variables {xi

j : i < κ, j < λ}. Thus τ∗(ϕ) can be regarded as a map from the
free generators of TmY(κ) to TmY(κ × λ). Since TmY(κ) is a free algebra, this
assignment extends uniquely to a homomorphism

τ∗(ϕ) : TmY(κ)→ TmY(κ × λ).

Claim 5.3.1. For every cardinal λ and every ϕ ∈ Tm(LX, λ), the following diagram
commutes:

TmY(κ)
τ∗(ϕ) //

π1

��

TmY(κ × λ)

πλ

��
F (TmX(1)) F (ϕ)

// F (TmX(λ))
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The proof works by induction on ϕ. We begin by the base case: ϕ is either
a variable or a constant. We can assume without loss of generality that the
identification of F (TmX(λ)) with a quotient of TmY(κ × λ) described above is
done in such a way that the claim holds for variables. Then we consider the case
where ϕ is a constant c. Then consider the following diagram.

F (TmX(1)) F (c)

��

F (c)

��
TmY(κ)

τ (c)
//

τ∗(c) ))

π1
55

TmY(0) f
// F (TmX(λ))

TmY(κ × λ)
πλ

HH

(7)

Recall that we identified F (TmX(0)) with TmY(0) and that, under this identifi-
cation, the map π0 becomes the identity map 1 : TmY(0) → TmY(0). Keeping
this in mind, we look at the left upper quadrant of diagram (7). It is an instance of
diagram (6), where we deleted the identity map π0 since it plays no significant role.
Therefore this quadrant commutes by construction of τ . Then we consider the
right upper quadrant of diagram (7), where f is the unique homomorphism given
by the universal property of the initial object, i.e., the map that sends each constant
term to its interpretation in F (TmX(λ)). Then let g : TmX(0)→ TmX(λ) be the
inclusion map. It is clear that the following diagram commutes.

TmX(1)
c

��

c

��
TmX(0) g

// TmX(λ)

In particular, this implies that the image under F of the above diagram commutes
too. But observe that F (g) = f , since TmY(0) is the initial object of Y. This shows
that the right upper quadrant of diagram (7) commutes. We are now ready to
prove the claim for ϕ = c. Let {xi : i < κ} be the free generators of TmY(κ). Then
consider i < κ and let ci ∈ LY be the constant symbol that is the i-th component
of the κ-sequence τ (c). Since the upper part of diagram (7) commutes, we have
that:

F (c) ◦ π1(xi) = f ◦ τ (c)(xi) = cF (TmX(λ))
i .

Moreover, observe that τ∗(c) = τ (c) by definition of τ∗. Together with the fact
that ci is a constant, this implies that

πλ ◦ τ∗(c)(xi) = πλ(c
TmY(κ×λ)
i ) = cF (TmX(λ))

i .

We conclude that πλ ◦ τ∗(c) = F (c) ◦ π1. This establishes the base case.
Then we turn to prove the inductive case. Consider a basic n-ary operation

ψ ∈ LX and ϕ1, . . . , ϕn ∈ Tm(LY, λ). Recall that the angle-bracket notation was
introduced in Subsection 2.1 to denote arrows induced by the universal property
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of the coproduct. Applying in succession the inductive hypothesis and the fact
that F preserves coproducts, we obtain that

πλ ◦ 〈τ∗(ϕ1), . . . , τ∗(ϕn)〉 =〈F (ϕ1), . . . ,F (ϕn)〉 ◦ πn

=F〈ϕ1, . . . , ϕn〉 ◦ πn

where ϕj : TmX(1) → TmX(λ) and τ∗(ϕj) : TmY(κ) → TmY(κ × λ) for ev-
ery j 6 n. Recall from the definition of τ that πn ◦ τ (ψ) = F (ψ) ◦ π1, where
ψ : TmX(1)→ TmX(n). Hence we conclude that

F (ψ(ϕ1, . . . , ϕn)) ◦ π1 =F (〈ϕ1, . . . , ϕn〉 ◦ ψ) ◦ π1

=F〈ϕ1, . . . , ϕn〉 ◦ F (ψ) ◦ π1

=F〈ϕ1, . . . , ϕn〉 ◦ πn ◦ τ (ψ)
=πλ ◦ 〈τ∗(ϕ1), . . . , τ∗(ϕn)〉 ◦ τ (ψ)
=πλ ◦ τ∗(ψ(ϕ1, . . . , ϕn)).

This establishes the claim.

Claim 5.3.2. 〈τ , Θ〉 satisfies condition 1 of Definition 4.2.

Consider a cardinal λ and equations Φ ∪ {ε ≈ δ} ⊆ Eq(LX, λ) such that
Φ �X ε ≈ δ. Define µ := |Φ|. For the sake of simplicity we identify µ with the set
Φ. Then consider the map τ∗ : Tm(LX, λ)→ Tm(LY, κ × λ)κ . Consider also the
free algebras TmX(µ) and TmY(κ × µ) with free generators {xα≈β : α ≈ β ∈ Φ}
and {xi

α≈β : i < κ, α ≈ β ∈ Φ} respectively. Then let

pl : TmX(µ)→ TmX(λ) and ql : TmY(κ × µ)→ TmY(κ × λ)

be the homomorphisms defined respectively by the following rules:

xα≈β 7−→ α and xi
α≈β 7−→ τ∗(α)(i).

Observe that the following diagram commutes.

TmY(κ × µ)
ql //

πµ

��

TmY(κ × λ)

πλ

��
F (TmX(µ)) F (pl)

// F (TmX(λ))

(8)

To prove this, it will be enough to show that πλ ◦ ql(xi
α≈β) = F (pl) ◦ πµ(xi

α≈β) for
every i < κ and α ≈ β ∈ Φ. Consider the maps

τ∗(xα≈β) : TmY(κ)→ TmY(κ × µ)

τ∗(α) : TmY(κ)→ TmY(κ × λ)

xα≈β : TmX(1)→ TmX(µ)

α : TmX(1)→ TmX(λ).
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Applying Claim 5.3.1 to the 2nd and 5th equalities below, we obtain that

F (pl) ◦ πµ(xi
α≈β) = F (pl) ◦ (πµ ◦ τ∗(xα≈β))(xi)

= F (pl) ◦ (F (xα≈β) ◦ π1)(xi)

= F (pl ◦ xα≈β) ◦ π1(xi)

= F (α) ◦ π1(xi)

= πλ ◦ τ∗(α)(xi)

= πλ ◦ ql(xi
α≈β).

Thus we conclude that diagram (8) commutes.
Now, observe that we can define two maps pr and qr (dual to pl and qr)

respectively by the rules:

xα≈β 7−→ β and xi
α≈β 7−→ τ∗(β)(i).

A reasoning analogous to the one described above yields that πλ ◦ qr = F (pr) ◦πµ.
Hence we showed that

πλ ◦ ql = F (pl) ◦ πµ and πλ ◦ qr = F (pr) ◦ πµ. (9)

Now, let φ be the X-congruence of TmX(λ) generated by Φ. It is clear that πφ is
a coequalizer of pl and pr. Since F preserves colimits, this implies that F (πφ) is a
coequalizer of F (pl) and F (pr). Keeping in mind that πµ is surjective, this means
that F (πφ) is also a coequalizer of F (pl) ◦ πµ and F (pr) ◦ πµ. Finally, with an
application of (9), we conclude that F (πφ) is a coequalizer of πλ ◦ ql and πλ ◦ qr.
In particular, this implies that the kernel of F (πφ) ◦ πλ is the Y-congruence of
TmY(κ × λ) generated by

τ ∗(Φ) ∪
⋃
j<λ

Θ(~xj) (10)

where ~xj = 〈xi
j : i < κ〉. Now observe that πφ ◦ ε = πφ ◦ δ, where ε, δ : TmX(1)⇒

TmX(λ) since 〈ε, δ〉 ∈ φ. By Claim 5.3.1 this implies that

F (πφ) ◦ πλ ◦ τ∗(ε) = F (πφ) ◦ F (ε) ◦ π1

= F (πφ) ◦ F (δ) ◦ π1

= F (πφ) ◦ πλ ◦ τ∗(δ).
Together with the description of the kernel of F (πφ) ◦πλ given in (10), this implies
that

τ ∗(Φ) ∪
⋃
j<λ

Θ(~xj) �Y τ
∗(ε ≈ δ).

This establishes Claim 5.3.2.

Claim 5.3.3. 〈τ , Θ〉 satisfies condition 2 of Definition 4.2.

Consider an n-ary operation symbol ψ ∈ LX and ε ≈ δ ∈ Θ. Claim 5.3.1 and
the fact that the kernel of π1 is the Y-congruence of TmY(κ) generated by Θ
imply that

πn(ε(τ∗(ψ)/~x)) = πn ◦ τ∗(ψ)(ε) = F (ψ) ◦ π1(ε) = F (ψ) ◦ π1(δ)

= πn ◦ τ∗(ψ)(δ) = πn(δ(τ∗(ψ)/~x)).
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Since πn is the kernel of the Y-congruence of TmY(κ × n) generated by Θ(~x1) ∪
· · · ∪Θ(~xn), we conclude that

Θ(~x1) ∪ · · · ∪Θ(~xn) �Y ε(τ∗(ψ)/~x) ≈ δ(τ∗(ψ)/~x).

This establishes Claim 5.3.3.

Claim 5.3.4. 〈τ , Θ〉 is a non-trivial contextual translation.

From Claims 5.3.2 and 5.3.3 it follows that 〈τ , Θ〉 is a contextual translation
of �X into �Y. It only remains to prove that 〈τ , Θ〉 is non-trivial. Suppose that
there is a tuple ~ϕ ∈ Tm(LY, 0)κ such that Y � Θ(~ϕ). Then let G be the functor
right adjoint to F . Since F is non-trivial, there is A ∈ Y such that G(A) is
non-trivial. Now observe that the solution set of Θ in A is in bijection with
hom(F (TmX(1)),A), since F (TmX(1)) is the quotient of TmY(κ) under the
Y-congruence generated by Θ. It is easy to see that ~ϕA a solution of Θ in A. Thus
hom(F (TmX(1)),A) 6= ∅. By the hom-set adjunction associated with F a G and
the universal property of the free 1-generated algebra we have that

0 6= | hom(F (TmX(1)),A)| = | hom(TmX(1),G(A))| = |G(A)|.
Since G(A) is non-trivial, it has at least two elements. Again, this implies that
there are two different solutions ~a,~c ∈ Aκ to the equations Θ. In particular, this
shows that there is i < κ such that

Θ(~x) ∪Θ(~y) 2Y xi ≈ yi.

This establishes Claim 5.3.4. �

As an exemplification of the construction above, we will describe the contextual
translation associated with the adjunction between Kleene algebras and bounded
distributive lattices.

Example 5.4 (Kleene Algebras). Let G : DL01 → KA be the functor described in
Example 3.10. In [10] a functor F left adjoint to G is described. Let us briefly
recall its behaviour. Given A ∈ KA, we let Pr(A) be the Priestley space dual
to the bounded lattice reduct of A [11]. Moreover, we equip it with a map
g : Pr(A)→ Pr(A) defined by the rule

g(F) 7−→ A r {¬a : a ∈ F}, with F ∈ Pr(A).

Now observe that
Pr(A)+ := {F ∈ Pr(A) : F ⊆ g(F)}

is the universe of a Priestley subspace of Pr(A). Keeping this in mind, we let
F (A) be the bounded distributive lattice dual to Pr(A)+. Moreover, given a
homomorphism f : A → B in KA, we let F ( f ) : F (A) → F (B) be the map
defined by the rule

U 7−→ {F ∈ Pr(B)+ : f−1(F) ∈ U}, for each U ∈ F (A).

The map F : KA→ DL01 is the functor left adjoint to G.
Now we turn to describe the contextual translation associated with the adjunc-

tion F a G. To this end, observe that the free Kleene algebra TmKA(1), its image
F (TmKA(1)) in DL01 and the free bounded distributive lattice TmDL01

(2) are
respectively the algebras depicted below.
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1 • 1 • 1•

x ∨ ¬x • c • x ∨ y•

x • ¬x• a • b• x • y•

x ∧ ¬x • 0 • x ∧ y•

0 • 0•
Then let π : TmDL01

(2) → F (TmKA(1)) be the unique (surjective) homomor-
phism determined by the assignment π(x) = a and π(y) = b. Following the
general construction described above, we should identify Θ with the kernel of π
viewed as a set of equations in 2 variables. But the only equation of this kind that
is not vacuously satisfied is x ∧ y ≈ 0. Hence we can set without loss of generality
Θ := {x ∧ y ≈ 0}.

The description of τ is more complicated and we will detail it only for the
case of negation. First observe that ¬ : TmKA(1) → TmKA(1) is the unique
endomorphism that sends x to ¬x. Then, applying the definition of F , it is easy to
see that F (¬) is the endomorphism of F (TmKA(1)) that behaves as the identity
except that it interchanges a and b. Now we have to choose an endomorphism
τ (¬) of TmDL01

(2) such that π ◦ τ (¬) = F (¬) ◦ π. It is easy to see that the
unique homomorphism τ (¬) determined by the assignment τ (¬)(x) = y and
τ (¬)(y) = x fulfils this condition. Hence the translation of ¬ consists of the pair
〈y, x〉. The same idea allows us to extend τ to the other constant and binary basic
symbols of KA as follows:3

x u y 7−→ 〈x1, x2〉 u 〈y1, y2〉:=〈x1 ∧ y1, x2 ∨ y2〉
x t y 7−→ 〈x1, x2〉 t 〈y1, y2〉:=〈x1 ∨ y1, x2 ∧ y2〉

and

¬x 7→ ¬〈x1, x2〉 := 〈x2, x1〉 1 7→ 1 := 〈1, 0〉 0 7→ 0 := 〈0, 1〉.

By Theorem 5.3 the pair 〈τ , Θ〉 is a contextual translation of �KA into �DL01
.

For the reader familiar with the theory of algebraizable logics [8] it may be
interesting to observe that this contextual translation is not induced by a translation
between two propositional logics (as was the case in Examples 4.3 and 4.4). This is
due to the fact that DL01 and KA are not the equivalent algebraic semantics of any
algebraizable logics. �

6. Decomposition of right adjoints

In the preceding sections we drew a correspondence between adjunctions and
contextual translations, by showing how can we convert one into the other and
vice-versa. Now we are ready to present the main outcome of this correspondence,
namely the discovery that every every right adjoint functor between generalized

3At this stage the reader may find it useful to compare the translation displayed here with the
sublanguage L of the matrix power DL01 that we considered in Example 3.10.
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quasi-varieties can be decomposed into a combination of two canonical deforma-
tions, namely the matrix power with (possibly) infinite exponents and the θL
construction. More precisely, we have the following:

Theorem 6.1. Let X and Y be generalized quasi-varieties.
1. For every non-trivial right adjoint G : Y → X there are a generalized quasi-variety K

and functors [κ] : Y → K and θL : K→ X (where θ is compatible with L in K) such
that G is naturally isomorphic to θL ◦ [κ].

2. Every functor of the form θL ◦ [κ] : Y → X (where θ is compatible with L in Y[κ]) is
a right adjoint.

Proof. 1. Let F be the functor left adjoint to G and let η, ε be the unit and counit
of the adjunction respectively. In Theorem 5.3 we showed that F gives rise to a
contextual translation 〈τ , Θ〉 of �X into �Y. Then consider the generalized quasi-
variety K and the right adjoint functors [κ] : Y → K and θL : K → X associated
with 〈τ , Θ〉 as in Theorem 4.5. We will prove that G and the composition θL ◦ [κ]
are naturally isomorphic.

To this end, it will be convenient to work with some substitutes of G and
θL ◦ [κ]. Let ALGX be the category of all algebras of the type of X. Then let
G∗ : Y → ALGX be the functor defined by the rule

A 7−→ hom(TmX(1),G(A))

f 7−→ G( f ) ◦ (·)

for every algebra A and homomorphism f in Y. The operations of the algebra
G∗(A) are defined as follows. Given an n-ary operation ψ ∈ LX with correspond-
ing arrow ψ : TmX(1)→ TmX(n), we set

ψG
∗(A)( f1, . . . , fn) := 〈 f1, . . . , fn〉 ◦ ψ

for every f1, . . . , fn ∈ G∗(A). Now observe that the map ζA : G(A)→ G∗(A) that
takes an element a ∈ G(A) to the unique arrow f ∈ G∗(A) such that f (x) = a is
an isomorphism for every A ∈ Y. It is easy to see that the global map ζ : G → G∗
is a natural isomorphism between G,G∗ : Y → ALGX. As a consequence, we obtain
the following:

Fact 6.1.1. The map G∗ can be viewed as a functor from Y to X naturally isomorphic to G.

Then we construct our substitute for θL ◦ [κ]. Consider the functor

hom(F (TmX(1)), ·) : Y → ALGX.

In particular, given A ∈ Y, the operations on hom(F (TmX(1)),A), for short
hom(A), are defined as follows:

ψhom(A)( f1, . . . , fn) := 〈 f1, . . . , fn〉 ◦ F (ψ),

for every f1, . . . , fn ∈ hom(A). Now, given A ∈ Y, we consider the map
σA : hom(A)→ θL (A[κ]) defined by the rule

f 7−→ 〈 f ◦ π1(xi) : i < κ〉

where π1 : TmY(κ)→ F (TmX(1)) is the map defined right before Definition 5.2.
Keeping in mind that the kernel of π1 is the Y-congruence of TmY(κ) generated
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by Θ, it is easy to see that σA is a well-defined bijection. It is an isomorphism too:
for f1, . . . , fn ∈ hom(A), we have that

σAψhom(A)( f1, . . . , fn) = σA(〈 f1, . . . , fn〉 ◦ F (ψ))
= 〈〈 f1, . . . , fn〉 ◦ F (ψ) ◦ π1(xi) : i < κ〉
= 〈〈 f1, . . . , fn〉 ◦ πn ◦ τ (ψ)(xi) : i < κ〉

= ψθL (A[κ])(〈〈 f1, . . . , fn〉 ◦ πn(xi
j) : i < κ〉 : j < n)

= ψθL (A[κ])(〈 f j ◦ π1(xi) : i < κ〉 : j < n)

= ψθL (A[κ])(σA( f1), . . . , σA( fn)).

The third equality above follows from the commutativity of diagram (6). This
shows that the global map σ : hom(F (TmX(1)), ·) → θL ◦ [κ] is a natural iso-
morphism between hom(F (TmX(1)), ·), θL ◦ [κ] : Y → ALGX. As a consequence
we obtain the following:

Fact 6.1.2. The map hom(F (TmX(1)), ·) can be viewed as a functor from Y to X
naturally isomorphic to θL ◦ [κ].

Thanks to Facts 6.1.1 and 6.1.2, in order to complete the proof it will be enough
to construct a natural isomorphism

µ : G∗ → hom(F (TmX(1)), ·).
This is what we do now. For every A ∈ Y, the component µA of the natural
transformation µ is the following map:

εA ◦ F (·) : hom(TmX(1),G(A))→ hom(F (TmX(1)),A).

From the hom-set adjunction associated with 〈F ,G, ε, η〉 it follows that µA is a
bijection. Then consider f1, . . . , fn ∈ hom(TmX(1),G(A)). Since F preserves
coproducts, we have that

µAψG
∗(A)( f1, . . . , fn) = µA(〈 f1, . . . , fn〉 ◦ ψ)

= εA ◦ F (〈 f1, . . . , fn〉 ◦ ψ)

= εA ◦ 〈F ( f1), . . . ,F ( fn)〉 ◦ F (ψ)
= 〈εA ◦ F ( f1), . . . , εA ◦ F ( fn)〉 ◦ F (ψ)
= 〈µA( f1), . . . , µA( fn)〉 ◦ F (ψ)

= ψhom(A)(µA( f1), . . . , µA( fn)).

Therefore we conclude that µA is an isomorphism.
It only remains to prove that the global map µ satisfies the commutative

condition required of natural transformations. In order to do this, consider any
homomorphism g : A → B in Y and an element f ∈ G∗(A). From the hom-set
adjunction associated with 〈F ,G, ε, η〉 it follows that

hom(F (TmX(1)), g) ◦ µA( f ) = g ◦ µA( f )

= µB(G(g) ◦ f )

= (µB ◦ G∗(g))( f ).
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Hence µ is a natural isomorphism as desired.
2. Consider an infinite cardinal λ such that Uλ(X) = X and define K :=

GQλ(Y
[κ]). Since θ is compatible with L in Y[κ] and the compatibility condition

is expressible by a set of generalized quasi-equations each of which is written
with finitely many variables, we conclude that θ is compatible with L in K too.
Moreover, from the fact that θL (Y[κ]) ⊆ X and Uλ(X) = X it follows that the
functor θL : K → X is well defined. By Theorems 3.5 and 3.8 we know that the
maps [κ] : Y → K and θL : K → X are right adjoint functors. As a consequence
their composition θL ◦ [κ] : Y → X is also a right adjoint. �

Corollary 6.2. Let F : X→ Y be a non-trivial left adjoint functor between generalized
quasi-varieties and φ ∈ ConXTmX(λ). Assume that the right adjoint of F decomposes
as θL ◦ [κ]. Then

F (TmX(λ)/φ) ∼= TmY(κ × λ)/CgY(τ
∗(φ) ∪

⋃
j<λ

Θ(~xj)).

Remark 6.3. The description of right adjoints given in Theorem 6.1 can be seen
as a purely algebraic formulation of the classical description of adjunctions in
categories with a free object, which can be traced back at least to [14].

To see why, suppose that F : X ←→ Y : G is an adjunction F a G, and that
X and Y are prevarieties. We proceed to sketch the general description of G(A)
in [14]. Since X contains free algebras, the universe of the algebra G(A) can
be identified with homX(TmX(1),G(A)). By the hom-set adjunction induced by
F a G, we know that

homX(TmX(1),G(A)) ∼= homY(F (TmX(1)),A).

Since Y contains arbitrarily large free algebras, the algebra F (TmX(1)) can be
expressed as a suitable quotient of a free algebra, i.e. F (TmX(1)) ∼= TmY(κ)/θ
for some cardinal κ and some congruence θ. Thus the universe of G(A) can be
identified with homY(TmY(κ)/θ,A). More in general G(A) can be identified
with the set homY(TmY(κ)/θ,A), equipped with a suitable algebraic structure.
This provides a full arrow-theoretic description of the algebra G(A) as

G(A) ∼= homY(TmY(κ)/θ,A).

The main contribution of the present work is to recognize that the algebra
homY(TmY(κ)/θ,A) in the above display can be given a very transparent de-
scription in terms of matrix powers and compatible equations. This is a conse-
quence of the fact that the set homY(TmY(κ)/θ,A) can be identified with the
set of solutions of the equations θ(~x) in A, which is exactly the universe of the
algebra θL (A[κ]). Moreover, this identification respect the algebraic structures,
yielding an isomorphism

homY(TmY(κ)/θ,A) ∼= θL (A[κ]).

As a consequence the structure of the algebra G(A) can be expressed in purely
algebraic and combinatorial terms as θL (A[κ]). In particular, this description of
G(A) was exploited to establish the correspondence between between adjunctions
and contextual translations. �

Until now we showed that every right adjoint functor G : Y → X between
generalized quasi-varieties induces a contextual translation 〈τ , θ〉 of �X into �Y,
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and vice-versa. In general, contextual translations 〈τ , θ〉 are infinite objects, in the
sense that τ is a map that translates terms into possibly infinite sequences of terms
and θ is a possibly infinite set of equations. It is therefore natural to ask under
which conditions these contextual translations can be finitized. In other words, we
can ask for sufficient and necessary conditions under which a right adjoint functor
G can be canonically decomposed as θL ◦ [κ] in such a way that κ ∈ ω and θ is a
finite set of equations. The next lemma provides an answer in the case where X
and Y are quasi-varieties.

Lemma 6.4. Let F : X←→ Y : G be an adjunction F a G between quasi-varieties. The
following conditions are equivalent:

(i) F preserves finitely presentable algebras.
(ii) F (TmX(1)) is finitely presentable.

(iii) G preserves directed colimits.
(iv) G can be decomposed as θL ◦ [κ] with both κ and θ finite.

Proof. The equivalence between (i) and (iii) is well known, and is a consequence of
the fact that the finitely X-presentable algebras are exactly the algebras A ∈ X for
which the functor hom(A, ·) : A → Set preserves directed colimits (see Lemma
2.1). Part (i)⇒(ii) is trivial and part (iv)⇒(i) is a consequence of Corollary 6.2.

(ii)⇒(iv): Assume that F (TmX(1)) is finitely presentable. Then there are n ∈ ω
and a compact Y-congruence Θ such that F (TmX(1)) = TmY(n)/Θ. Now, Θ is
generated by a finite set Φ ⊆ Θ. This means that G can be decomposed as θL ◦ [n],
where θ := {~ε ≈ ~δ : 〈ε, δ〉 ∈ Φ} and~ε, ~δ are sequences of length n. �

Remark 6.5. Even if we do not pursue the details here, it is interesting to observe
that if G : Y → X is a right adjoint between quasi-varieties satisfying any of the
equivalent conditions in the above lemma, then G is indeed induced by a model
theoretic interpretation of the language of X into the language of Y, see [17, Chapter
5] for the relevant definitions. �

The next example shows that there are adjunctions between quasi-varieties that
do not meet the equivalent conditions of Lemma 6.4. In other words, it shows that
there are contextual translations between finitary relative equational consequences
that cannot be finitized.

Example 6.6 (Ring Hom-Functor). Consider a generalized quasi-variety X and an
algebra A ∈ X. Then let hom(A, ·) : X → Set be the functor defined by the
following rule:

B 7−→ hom(A,B)

f : B → C 7−→ f ◦ (·) : hom(A,B)→ hom(A,C).

The functor hom(A, ·) has a left adjoint F : Set→ X defined as follows. Given a set
I, the algebra F (I) is the copower of A indexed by I. Moreover, given a function
f : I → J between sets, we let F ( f ) : F (I) → F (J) be the map 〈p f (i) : i ∈ I〉
induced by the universal propery of the coproduct F (I), where {pj : A→ F (J) :
j ∈ J} are the maps associated with the copower F (J).

Now consider the special case where X is the variety R of commutative rings
with unit. Then consider the functor F that is left adjoint to hom(Q, ·) : R→ Set,
where Q is the ring of rational numbers. First observe that F does not preserve
finitely generated algebras. Observe that finitely generated algebras are exactly the
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quotients of the finitely presentable ones. Since F preserves surjective homomor-
phisms, we conclude that it does not preserve finitely presentable algebras. �

In this paper contextual translations have been presented as translations between
relative equational consequences. Nevertheless, the contextual translations coming
from some of the motivating examples (such as Gödel and Kolmogorov’s ones)
originated as translations between propositional logics. More precisely, it is a general
fact that if two generalized quasi-varieties X and Y are the equivalent algebraic
semantics of two algebraizable logics L and L′ in the sense of [8], then every
contextual translation of �X into �Y can be viewed as translation of L into L′.
In this sense, contextual translation may provide a useful notion of translation
between algebraizable logics (possibly in different languages).
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