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1 Introduction

The contribution of Don Pigozzi to the recent evolution of algebraic logic
is enormous. He has shaped the field in such a way that the community
has adopted a special name, abstract algebraic logic, promoted by him,1 to
refer to the area of algebraic logic that studies in abstract mathematical
terms the very process of algebraization of logics, associates with every logic
an algebraic counterpart, relates properties of a logic with properties of its
algebraic counterpart, and classifies logics according to the type of relation
they enjoy with it; all this, with the purpose that once one knows where a
logic fits in the classification, the application of the theory built around the
classification criteria and their consequences can immediately reveal many of
its properties.

Don’s fundamental work was developed mostly, but not exclusively, in
his long standing collaborations with Willem J. Blok and with Janusz
Czelakowski. At its center we find the construction of an impressive edi-
fice, the so-called Leibniz hierarchy (Blok and Pigozzi, 1992), based on the
notions of algebraizable logic (Blok and Pigozzi, 1989) and of protoalgebraic
logic (Blok and Pigozzi, 1986). Other scholars (such as Janusz Czelakowski,
Burghard Herrmann, Ramon Jansana, James Raftery) have also contributed
to the enlargement and further study of this hierarchy. The latest addition
to the Leibniz hierarchy is the class of truth-equational logics, characterized
in Raftery (2006); up to now, it is the only class in this hierarchy not con-
tained in the class of protoalgebraic logics (but see below). Don also laid
the foundations (Pigozzi, 1991) of the study with algebraic logic tools of the
distinction between Fregean and non-Fregean logics (due to Roman Suszko);
this gave rise to the technical notion of Fregean logic and later on to the
construction of a simpler hierarchy, the Frege hierarchy,2 where logics are
classified according to replacement properties they (or their models) satisfy.
We adress the reader to Czelakowski (2001) for more information on the
Leibniz hierarchy, and to Font (2015, 2016) for both hierarchies.

One of the goals of the present paper is to contend that the (already
well-known) class of assertional logics (also called “1-assertional” in the liter-
ature) should be counted among those in the Leibniz hierarchy (notice that
it is not included in the class of protoalgebraic logics). We also study the
relations between this class and that of truth-equational logics, and between

1 In this Don followed a suggestion of Hajnal Andréka and István Németi, who first
used the term, in Section 5.3 of Henkin, Monk, and Tarski (1985), for their abstract
model theoretic approach to the algebraization of first-order logic. It was first applied
in the present sense (i.e., to the study of sentential logics) in the Workshop on abstract
algebraic logic organized in Barcelona, under Don’s chairmanship, in 1997. In the 2010
version of the Mathematics Subject Classification, the term appears with code 03G27.
Notice that these initial paragraphs of our Introduction just intend to put the paper in
context; a complete exposition of Don’s work is found elsewhere in this volume.
2 See the detailed references given after Definition 12.
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each of these and the classes in the Frege hierarchy, in order to further clarify
the internal structure of this hierarchy and some relations between the two
hierarchies. In particular, we show that the Frege hierarchy becomes consid-
erably simplified inside large portions of the Leibniz hierarchy. Our results,
and the construction of some ad hoc counterexamples, allow us to answer
several open problems on these issues; one of these answers is only partial
and opens another new problem.

The structure of the paper is as follows. After summarizing the indispens-
able preliminaries in Section 2, we introduce assertional logics and truth-
equational logics in Section 3. The analysis of several characterizations of
the former among the latter supports our claim that the class of assertional
logics should be considered as belonging to the Leibniz hierarchy, as it can be
characterized by conditions formulated purely in terms of the Leibniz congru-
ence, in the same way as, say, regularly algebraizable logics are characterized
among the algebraizable ones. We see that the class of truth-equational logics
occupies an intermediate position between the class of assertional logics and
the class of logics having an algebraic semantics (the latter not belonging
to the Leibniz hierarchy). Then, in Section 4 we introduce the fundamental
notion of full generalized model of a logic, present the Frege hierarchy, and
establish that Fregean logics with theorems are all assertional, and hence
truth-equational, and that for a fully selfextensional logic, to be assertional
is the same as to be truth-equational. In Section 5 we give two characteri-
zations, of independent interest, of truth-equational logics in terms of their
full generalized models. In Section 6, using these characterizations and the
appropriate counterexamples, we prove that for truth-equational logics the
Frege hierarchy reduces to exactly three classes, and that for finitary weakly
algebraizable logics it reduces to two. Finally, we combine our results in or-
der to answer several open problems on the structure of the Frege hierarchy
posed in Font and Jansana (1996) and Font (2003, 2006): we prove that the
class of selfextensional logics is not the union of the classes of Fregean and
fully selfextensional logics, that there are finitely regularly algebraizable log-
ics that are selfextensional but not fully selfextensional, and that for logics
with theorems the class of fully Fregean logics is the intersection of the classes
of Fregean logics and of fully selfextensional logics. This last result opens a
new problem, that of whether the assumption that the logic has theorems
can be deleted from it.

2 Preliminaries

We assume the reader is acquainted with the standard notions, terminology
and notations of abstract algebraic logic, as given for instance in Blok and
Pigozzi (1989); Czelakowski (2001); Font (2015, 2016); Font and Jansana
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(1996); Font, Jansana, and Pigozzi (2003); Raftery (2006); Wójcicki (1988).
We recall here just the most central to the paper.

All logics and all algebras we deal with are assumed to share an arbi-
trary but fixed algebraic language. A (sentential) logic L is identified with
its consequence relation �L.

Three kinds of algebra-based structures play a rôle in this area as models
of logics: just plain algebras (denoted by A,B, etc., with universes A,B,
resp.), matrices in the usual sense (i.e., pairs �A,F � where F ⊆ A), and
generalized matrices (g-matrices for short), which are pairs �A,C� where
C is a closure system of subsets of A. If A is an algebra, the set of all the L-
filters of A is a closure system and is denoted by FiLA. A matrix �A,F � is
a model of a logic L when F ∈ FiLA, and a g-matrix �A,C� is a generalized
model (g-model for short) of L when C ⊆ FiLA. Thus, the largest g-model
of L on A is the g-matrix �A,FiLA�.

Given an algebra A and a subset F of its universe A, the Leibniz congru-
ence of F , denoted by ΩAF , is the largest congruence of A that is compatible
with F in the sense that it does not identify elements in F with elements of
A not in F . Note that this congruence is a purely algebraic object and does
not depend on any logic. However, when studying a sentential logic L, the
term Leibniz operator on A refers to the map F �→ ΩAF restricted to
FiLA. Several classes of logics with particularly well-behaved matrix seman-
tics can be characterized in terms of properties of this operator, constituting
the so-called Leibniz hierarchy (the part of this hierarchy relevant for the
paper is depicted in Figure 1 on page 10). A matrix is reduced when its
Leibniz congruence is the identity relation. The class of reduced models of L
is denoted by Mod∗L, and the class of its algebraic reducts by Alg∗L. This
class of algebras was classically taken to be the most natural algebraic coun-
terpart of the logic L, but in Font and Jansana (1996) it was shown that
this may not be the case for some non-protoalgebraic logics, and that a more
general algebra-based semantics where generalized matrices replace ordinary
matrices seems to yield better results. To introduce it we need a few more
definitions.

If C is a closure system over the universe A of an algebra A, its Tarski
congruence is ∼

ΩAC :=
�{ΩAF : F ∈ C}; it is the largest congruence of A

compatible with all F ∈ C. The map C �−→ ∼
ΩAC is called the Tarski operator

on A. The reduction of a g-matrix �A,C� is the result of factoring it out by
its Tarski congruence, that is, the quotient g-matrix �A/

∼
ΩAC ,C/

∼
ΩAC�. A

g-matrix is a g-model of a logic if and only if its reduction is. A g-matrix is
reduced when its Tarski congruence is the identity relation (obviously, the
reduction of a g-matrix is always reduced).

The class AlgL is defined as the class of the algebraic reducts of the re-
duced g-models of a logic L. This class of algebras provides another algebraic
counterpart of a logic that is useful for all logics, even if they are not protoal-
gebraic. Moreover, when L is protoalgebraic, AlgL = Alg∗L. In particular, if
L is algebraizable, then AlgL coincides with its largest equivalent algebraic
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semantics introduced by Blok and Pigozzi (1989), and when L is implicative,
AlgL coincides with the class of L-algebras as defined by Rasiowa (1974).

A simple construction that plays an important rôle in the paper is the
following. If C is a closure system, for each F ∈ C we consider the closure
system CF := {G ∈ C : F ⊆ G}. Hence, each g-model �A,C� of a logic L gives
rise to a family of g-models of the form �A,CF �, one for each for F ∈ C. In
particular, from the largest g-model �A,FiLA� we obtain a g-model of the
form �A,(FiLA)F � for each F ∈ FiLA.

If �A,C� is a g-matrix and F ∈ C, the Suszko congruence of F (relative
to C) is ∼

ΩA
C F := ∼

ΩACF =
�{ΩAG : G ∈ C ,F ⊆ G}. This notion was formally

introduced3 by Czelakowski (2003), in the special case where C = FiLA; in
this case, since the relativization is actually determined by L, it makes sense
to use the symbol ∼

ΩA
L F instead of the more complicated ∼

ΩA
FiLAF , when

F ∈ FiLA, and therefore
∼
ΩA

L F := ∼
ΩA(FiLA)F =

�{ΩAG : G ∈ FiLA ,F ⊆ G}. (1)

A model �A,F � of a logic L is Suszko-reduced when its Suszko congruence∼
ΩA

L F relative to L is the identity relation. The class of Suszko-reduced models
of L is denoted by ModSuL. The class of algebraic reducts of the matrices in
ModSuL turns out to be the class AlgL; this fact reinforces the relevance of
this class as a universal algebraic counterpart of a logic.

The map given by F �−→ ∼
ΩA

L F defined on FiLA is called the Suszko
operator (relative to L) on A. A logic is protoalgebraic if and only if the
Suszko operator (relative to it) and the Leibniz operator, both on the for-
mula algebra, coincide on its theories (Czelakowski, 2001, Theorem 1.5.4);
or, equivalently, if and only if the two operators coincide on the filters of the
logic on arbitrary algebras (Czelakowski, 2003, Theorem 1.10). Thus, it seems
that the specific properties of the Suszko operator should be particularly rel-
evant for algebraic studies of logics where protoalgebraicity is not assumed;
for instance, it is one of the key tools in Raftery’s study of truth-equational
logics (Raftery, 2006). The paper by Albuquerque et al. (2016) studies a
common framework that encompasses both the Leibniz and the Suszko oper-
ators, and obtains characterizations of several classes in the Leibniz hierarchy
in terms of properties of the Suszko operator.

Each closure system C on a set A has an associated closure operator C
over A, defined as CX :=

�{F ∈ C : X ⊆ F} for all X ⊆ A. Using it we
can define the Frege relation of a closure system C as ΛC :=

�
�a,b� ∈ A ×

A : C{a} = C{b}
�

; notice that �a,b� ∈ ΛC if and only if a and b belong to
the same members of C. This defines the Frege operator (relative to C)
as the map F �−→ ΛCF := ΛCF , for F ∈ C. The relations ΛC and ΛCF are
equivalence relations, but not necessarily congruences; it turns out that the

3 Czelakowski attributes its invention and first characterization to Suszko, in unpub-
lished lectures.
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largest congruence of A below the Frege relation ΛC is the Tarski congruence∼
ΩAC, and the largest congruence of A below ΛCF is the Suszko congruence∼
ΩA

C F .
The set ThL of theories of a logic L is a closure system, and so we can

always view a logic as the g-matrix �Fm,ThL�; the associated closure oper-
ator will be denoted by CL. Moreover, FiLFm = ThL. Thus, all the above
definitions and constructions given for arbitrary g-matrices can in particular
be given for a logic. In this case, the superscript that would correspond to the
formula algebra will be omitted; thus, on the set of theories of L we have the
Leibniz operator Ω and the Suszko operator ∼

ΩL, and we can also consider
the Tarski operator ∼

Ω on closure systems of theories. The Frege relation and
operator relative to ThL are denoted by ΛL and ΛL instead of ΛThL and
ΛT hL, respectively. The relation ΛL is also denoted by ��L, as it is simply
the relation of interderivability with respect to the logic L. As established in
general, note that ∼

ΩL is the largest congruence below ΛL.
So far we have recalled the definition of two classes of algebras associated

with each logic L, namely Alg∗L and AlgL. A third class it is useful to con-
sider, called the intrinsic variety of L, is defined as VL := V(Fm/

∼
ΩL),

where for a class K of algebras the variety it generates is denoted by V(K).
Since the congruence ∼

ΩL is fully invariant, it follows that VL � α ≈ β if
and only if �α,β� ∈ ∼

ΩL. The following facts about the three classes will be
relevant to the paper:

Alg∗L ⊆ AlgL ⊆ VL V(Alg∗L) = V(AlgL) = VL.

An interesting fact we will need is the following.

Lemma 1. Let L be a logic complete with respect to a class of (g-)matrices
with the class K of algebras as algebraic reducts. For all α,β ∈ Fm, if K �
α ≈ β, then α ��L β. As a consequence, VL ⊆ V(K), and hence both Alg∗L
and AlgL are included in the variety generated by K.

Proof. Assume that K � α ≈ β; this means that for any A ∈ K and any h ∈
Hom(Fm,A) , hα = hβ. In particular, for any matrix �A,F � in the class,
hα ∈ F if and only if hβ ∈ F . The completeness of L with respect to the class
of matrices implies that α ��L β. The case of g-matrices is proved similarly.
That is,

�
�α,β� ∈ Fm×Fm : K � α ≈ β

�
⊆ ΛL. But since the set is clearly a

congruence of the formula algebra, this fact implies that
�

�α,β� ∈ Fm×Fm :
K � α ≈ β

�
⊆ ∼

ΩL. This shows that VL ⊆ V(K), and the fact that Alg∗L and
AlgL generate the variety VL proves the final assertion. ��

In practice, this may give interesting and workable information for a logic
that is defined from a single (g-)matrix, or a small set of (g-)matrices: the
equations that hold in the algebraic reducts of the defining (g-)matrices also
hold in the three classes of algebras associated with the logic (see Example 23
for an application).
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3 Assertional logics and truth-equational logics

Several classes of logics, of different strength, can be defined by considering
how the truth filter in their matrix models (i.e., the set F of the matrices
�A,F � that are models of L) is determined, and by their relation to the
relative equational consequences of classes of algebras. To introduce them we
need some further notation and terminology.

Equations are identified with pairs of formulas, which are conventionally
denoted by α ≈ β instead of �α,β�. Any set τττ(x) of equations in at most
one variable x induces a map, denoted also by τττ , that transforms (sets of)
formulas into sets of equations; it is defined by putting τττϕ := τττ(ϕ) for any
ϕ ∈ Fm, and τττΓ :=

��
τττϕ : ϕ ∈ Γ

�
for any Γ ⊆ Fm. Then, for any algebra

A we consider the set of “solutions” of the equations in τττ(x),

τττA :=
�

a ∈ A : A � τττ(x) [[a]]
�

=
�

a ∈ A : δA(a) = εA(a) for all δ ≈ ε ∈ τττ(x)
�

,

and for each a ∈ A we put

τττA(a) :=
�

�δA(a),εA(a)� : δ ≈ ε ∈ τττ(x)
�

⊆ A×A.

It is interesting to notice that a ∈ τττA if and only if τττA(a) ⊆ IdA, the identity
relation on A.

Definition 2. Let �A,F � be a matrix, M a class of matrices, and τττ(x) a set
of equations.

• τττ defines the set F , or defines truth in �A,F �, when F = τττA; i.e.,
when for any a ∈ A, a ∈ F if and only if A � τττ(x) [[a]], i.e., if and only if
τττA(a) ⊆ IdA.

• τττ defines truth in M when it defines truth in all the matrices in M.
• Truth is equationally definable in M when there is a set of equations

τττ(x) that defines truth in M.

In all these cases, the equations in the set τττ(x) are called the defining equa-
tions.

Note that when this happens, for each algebra A there can be at most
one subset F of A such that �A,F � ∈ M; this (in general weaker) property is
called in the literature the implicit definability of truth in M.

We are particularly interested in logics that have a complete matrix seman-
tics where truth is equationally definable. These logics can be alternatively
(and more intuitively) described with the help of the equational conse-
quence relative to a class of algebras K. This is a closure relation �K on
the set of equations, defined as follows. For any set Θ of equations and any
equation δ ≈ ε,
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Θ �K δ ≈ ε ⇐⇒ for every A ∈ K and every h ∈ Hom(Fm,A) ,

if A � α ≈ β [[h]] for all α ≈ β ∈ Θ , then A � δ ≈ ε [[h]] .

With this definition, the following fact is easy to prove.

Lemma 3. A logic L is complete with respect to some class M of matrices
where truth is equationally definable if and only if there is a class K of algebras
and a set of equations τττ(x) such that for all Γ ∪{ϕ} ⊆ Fm,

Γ �L ϕ ⇐⇒ τττ Γ �K τττ ϕ.

Proof. For one direction, take K as the class of algebraic reducts of M; for
the other, take M :=

�
�A,τττA� : A ∈ K

�
. ��

When the situation is as in the lemma, the class K is called an algebraic
semantics for the logic L.

A special kind of logics having an algebraic semantics correspond to those
where there is a single defining equation with a particular and simple form,
which we proceed to describe. A class of algebras is pointed when there
is a term that is constant in the class. This term, usually denoted by �,
can be a primitive constant of the language, or be made up from primitive
constants, or be a term with variables such that in the algebras of the class,
all interpretations give it the same value; in this second case, it can safely
be assumed that the term has only the variable x. So, we assume that �
is a term with at most the variable x, and will occasionally write �(x) to
emphasize this fact.

Now we can introduce the first main concept studied in the paper.

Definition 4. Let K be a pointed class of algebras, with � as the correspond-
ing constant term. The assertional logic of K is the logic L determined by
the following condition: for all Γ ∪{ϕ} ⊆ Fm,

Γ �L ϕ ⇐⇒ {γ ≈ � : γ ∈ Γ} �K ϕ ≈ �.

A logic L is an assertional logic when it is the assertional logic of some
pointed class of algebras.

In other words, L is the assertional logic of K if and only if L has K as an
algebraic semantics with x ≈ � as defining equation, and if and only if L is
complete with respect to the class of matrices

�
�A,{�A}� : A ∈ K

�
. We will

see that the simplicity of the equation entails strong properties, not shared
by logics having algebraic semantics with arbitrary defining equations.4 Note
that the constant term � must be a theorem of any assertional logic, because
� ≈ � obviously holds in K. Note also that if a class of algebras is pointed,
4 A logic having K as algebraic semantics with defining equations τττ is also called “the
τττ -assertional logic of K” in the literature; in such a case, the term “1-assertional” is used
for our “assertional”. In the present paper we will not need this more general terminology.
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then the variety it generates is pointed as well. Using Lemma 1, we can obtain
the following fact, which is also of interest.

Lemma 5. If L is the assertional logic of a pointed class of algebras K, then
VL ⊆ V(K). As a consequence, the classes Alg∗L and AlgL are also pointed,
with the same constant term as K. ��

Now we can introduce the second main concept studied in the paper.

Definition 6. A logic L is truth-equational when truth is equationally
definable in Mod∗L.

The notion of truth-equational logic was studied by Raftery (2006); the
above definition, which is more convenient for the present paper, is actually an
equivalent characterization, which follows from Theorem 25 of Raftery (2006).
Raftery proved that truth-equational logics need not be protoalgebraic, but
nevertheless they can be characterized by properties of the Leibniz operator
(see Theorem 18 below), and hence they belong in the Leibniz hierarchy.

It is clear from the definition, by the completeness of L with respect to the
class Mod∗L, that if L is truth-equational, then it has an algebraic semantics,
namely the class Alg∗L. Note that the converse is not true, as witnessed by
Example 1 of Raftery (2006), but it is so when τττ has the form x≈�, with � a
constant term of Alg∗L; this fact is contained in the following characterization,
essentially due to Raftery, of the assertional logics as a subclass of truth-
equational logics.

Theorem 7. For any logic L the following conditions are equivalent:

(i) L is an assertional logic.
(ii) L is truth-equational, with a truth definition of the form x ≈ �, where

� is a constant term of Alg∗L or, equivalently, of AlgL.
(iii) L has Alg∗L as an algebraic semantics with x ≈ � as defining equation,

where � is a constant term of Alg∗L.
(iv) L has AlgL as an algebraic semantics with x ≈ � as defining equation,

where � is a constant term of AlgL.

Proof. Assertional logics satisfiy the conditions established in Corollary 40
of Raftery (2006) for a logic to be truth-equational, in this case with a truth
definition of the form x ≈ � where � is a theorem of the logic. Moreover,
by Lemma 5, we know that � will be a constant of Alg∗L and of AlgL. This
shows that (i) implies (ii). It has already been observed as a general property
that (ii) implies (iii). Similarly, (ii) implies (iv), because a logic is truth-
equational if and only if truth is equationally definable in ModSuL (Raftery,
2006, Theorem 28), and the class of algebraic reducts of ModSuL is AlgL.
Finally, each of (iii) and (iv) implies (i), simply by the involved definitions.

��
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regularly
algebraizable

��
��

algebraizable

��
��

regularly weakly
algebraizable
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��

Fregean
with theorems

��
equivalential

��

weakly
algebraizable

�� ��

assertional

��
protoalgebraic truth-equational

��
have an algebraic

semantics

Fig. 1 The classes of logics in the fragment of the Leibniz hierarchy relevant to this
paper, including the newly added class (in boldface), and showing (in italics) two related
classes not belonging to it. Arrows indicate class inclusion.

Thus, all assertional logics are truth-equational; the class of the latter lies
between the class of the former and that of the logics having an algebraic
semantics (see Figure 1). This brings back into the Leibniz hierarchy many
non-protoalgebraic logics that previously had seemed excluded from it. For
instance, the �∧,∨,�,⊥�-fragment of classical logic, which is the assertional
logic of the variety of bounded distributive lattices; Visser’s “basic logic”
BPL�, shown to be non-protoalgebraic by Suzuki et al. (1998, Theorem 14);
the implication-less fragment IPC∗ of intuitionistic logic, proven to be non-
protoalgebraic by Blok and Pigozzi (1989, § 5.2.5); and its denumerably many
axiomatic extensions considered by Rebagliato and Verdú (1993). IPC∗ and
its extensions are examples where the constant term is not made up from
primitive constants of the language; indeed, there � := ¬(x∧¬x).

Observe that by Theorem 7, if L is the assertional logic of some class K
of algebras, then it is the assertional logic of the class Alg∗L, and also of the
class AlgL.

Assertional logics can be characterized in an independent way through the
notion of a unital class of matrices, i.e., a class of matrices where all the
filters are one-element sets:

Theorem 8. For any logic, L the following conditions are equivalent:
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(i) L is an assertional logic.
(ii) The class of matrices Mod∗L is unital.

(iii) The class of matrices ModSuL is unital.
(iv) L has theorems and is complete with respect to a unital class of matrices.

Proof. To show that (i) implies (ii) we use the characterizations of be-
ing assertional in Theorem 7. Thus, the assumption implies that Mod∗L =�

�A,{�A}� : A ∈ Alg∗L
�

and that this is a unital class. (i) implies (iii) for the
same reason, applied to the class ModSuL =

�
�A,{�A}� : A ∈ AlgL

�
. Triv-

ially, each of (ii) and (iii) implies, separately, the second assertion of (iv), as
a consequence of the completeness of L with respect to Mod∗L and ModSuL,
respectively. Now observe that if L has no theorems, then for any algebra
A, the matrix �A,∅� is a model of L. But, in particular, for a trivial (i.e.,
one-element) algebra A, the matrix �A,∅� is always reduced and Suszko-
reduced, because then ΩA{∅} = ∼

ΩA
L {∅} = A×A = IdA. Thus, we would have

that �A,∅� ∈ Mod∗L and �A,∅� ∈ ModSuL, respectively, against the assump-
tion that the respective class is unital. This shows that L has theorems and
completes the proof of (iv). Finally, in order to show that (iv) implies (i),
let M be the unital class of matrices with respect to which L is complete,
and let K be the class of their algebraic reducts. Observe that since L has
theorems, all L-filters are non-empty. Therefore, since the intersection of two
L-filters is always an L-filter, and it cannot be empty, there can be at most
one one-element L-filter in each (arbitrary) algebra. The assumption that M
is unital means that algebras in K have indeed one such L-filter, and it is
the only one on the algebra making the matrix reduced. Let � be a theo-
rem of L in at most the variable x (which exists by the first assumption),
and let A ∈ K. Since � is a theorem, for every a ∈ A the point �A(a) must
belong to the mentioned L-filter, therefore this L-filter must be exactly the
set {�A(a)}, for any a ∈ A. This also implies that �A(a) = �A(b) for all
a,b ∈ A. Therefore, � is a constant term of K, that is, the class K is pointed,
and M =

�
�A,{�A} : A ∈ K�

�
. After this, the completeness of L with respect

to M means that L is the assertional logic of K. ��

The fact that assertional logics have a unital class of reduced models has
the following, seldom noticed consequence:

Corollary 9. If L is an assertional logic, then the class of algebras Alg∗L is
relatively point-regular.

Proof. Let � be the constant term of Alg∗L witnessing that L is assertional,
as in the previous results. Let A ∈ Alg∗L and let θ,θ� ∈ CoAlg∗LA such that
�A/θ = �A/θ�. Since A/θ ∈ Alg∗L, by Theorem 8, �A/θ,{�A/θ}� ∈ Mod∗L.
Now, if π : A → A/θ is the canonical projection, we have that

θ = π−1IdA/θ = π−1ΩA/θ{�A/θ} = ΩAπ−1{�A/θ} = ΩA�
�A/θ

�
.
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The same argument for θ� shows that θ� = ΩA�
�A/θ��. The assumption that

�A/θ = �A/θ� implies that θ = θ�. ��

The following characterization of assertional logics (if defined as in The-
orem 8) is essentially due to Suszko (in unpublished lectures), according
to Czelakowski (1981); the name “Suszko rules” was coined by Rautenberg
(1993).

Theorem 10. For any logic L, the following conditions are equivalent:

(i) L is an assertional logic.
(ii) L has theorems and satisfies the so-called “Suszko rules”:

x,y,ϕ(x,�z) �L ϕ(y,�z) , (2)

for all ϕ(x,�z) ∈ Fm.
(iii) L has theorems and satisfies that �x,y� ∈ ∼

ΩLCL{x,y}.
(iv) L has theorems and satisfies that for every algebra A and every a,b ∈ A,

�a,b� ∈ ∼
ΩA

L FiAL {a,b}

Proof. (i)⇒(ii) We know all assertional logics have theorems. Completeness
of L with respect to some unital class of matrices, which Theorem 8 guaran-
tees, directly implies the Suszko rules.
(ii)⇒(iii) and (iv) Let Γ ∈ ThL be such that CL{x,y} ⊆ Γ , that is, x,y ∈ Γ .
Then by the Suszko rules, ϕ(x,�z) ∈ Γ if and only if ϕ(y,�z) ∈ Γ , for all
ϕ(x,�z) ∈ Fm. This means that �x,y� ∈ ΩΓ . Therefore, �x,y� ∈ ∼

ΩLCL{x,y},
which proves (iii). Point (iv) is proved in the same way, but working on the
L-filters of an arbitrary algebra.
(iii)⇒(ii) follows by the same argument as the preceding implication; as a
matter of fact, that the Suszko rules hold is equivalent to the condition that
�x,y� ∈ ∼

ΩLCL{x,y}.
(ii)⇒(i) Let �A,F � ∈ Mod∗L. Since L has theorems, F �= ∅. Then the
Suszko rules imply that F is a one-element set: If a,b ∈ F , then for every
�c ∈ An , ϕA(a,�c) ∈ F if and only if ϕA(b,�c) ∈ F , that is, �a,b� ∈ ΩAF ; since
the matrix is reduced, this implies that a = b. Thus, all the reduced models
of L are unital, and by Theorem 8 this fact implies that L is an assertional
logic.
(iv)⇒(iii) because the latter is a particular case of the former. ��

After the preceding results, we think it becomes clear that the class of
assertional logics should be counted among those in the Leibniz hierarchy, as
it can be defined by conditions on the Leibniz congruence: notice that the
second conditions in points (iii) and (iv) of Theorem 10 can be paraphrased as
“�x,y� ∈ ΩΓ for all Γ ∈ ThL such that x,y ∈ Γ” and “�a,b� ∈ ΩAF for all F ∈
FiLA such that a,b ∈ F”, respectively. For protoalgebraic logics, these can be
simplified to “�x,y� ∈ ΩCL{x,y}” and “�a,b� ∈ ΩAFiAL {a,b}”, respectively.
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It is well known that inside protoalgebraic logics, any of these conditions,
or the equivalent ones found in Theorems 7 and 8, determine the classes
of regularly weakly algebraizable logics; and inside equivalential logics, they
produce the regularly algebraizable logics. These classes are usually considered
as belonging to the Leibniz hierarchy, and by the same reason should the class
of assertional logics be considered in it; its location in the hierarchy is parallel
to the former ones, as Figure 1 on page 10 shows.

This new member of the hierarchy is different from the existing ones, and
its location is really as shown in Figure 1, as the following examples confirm.

• There are truth-equational logics that are not assertional. Examples of this
are all algebraizable logics that are not regularly algebraizable, such as all
substructural logics associated with a variety of non-integral residuated
lattices, described by Galatos et al. (2007); among the best known mem-
bers of this class we find Relevance Logic (with and without the “Mingle”
axiom; i.e., R and RM) and the multiplicative-additive fragment of Linear
Logic MALL. Raftery (2006, Example 9) provides a non-protoalgebraic
example: The logic in the language �→,¬� defined by taking as algebraic
semantics the variety generated by the Sobociński three-element algebra,
with x ≈ x → x as defining equation. This logic, which has the same the-
orems as (but does not coincide with) the implication-negation fragment
of RM , is neither protoalgebraic nor assertional, but is truth-equational.
Notice that, although the term x→x is a theorem of the logic, it is not a
constant term of the class of algebras.

• There are assertional logics that are not (regularly) weakly algebraizable.
Examples of this will be all assertional logics that are not protoalgebraic,
some of which are mentioned after Theorem 7.

From our Theorem 8, using Theorem 5.6.3 of Czelakowski (2001), it follows
that the class of regularly weakly algebraizable logics is the intersection of
the class of protoalgebraic logics and of assertional logics, and hence also the
intersection of the classes of weakly algebraizable logics and of assertional
logics; Figure 1 on page 10 shows these facts. In particular, a logic L is
regularly weakly algebraizable if and only if it is protoalgebraic and Mod∗L is
unital; it is interesting to notice that the two just mentioned conditions can
be formulated by making reference only to the class Alg∗L:

Corollary 11. A logic L is regularly weakly algebraizable if and only if it has
Alg∗L as an algebraic semantics with x ≈ � as defining equation, where � is
a constant term of Alg∗L, and Alg∗L is closed under subdirect products.

Proof. Putting Theorems 7 and 8 together, we see that the condition that
Mod∗L is unital can be equivalently formulated in terms of Alg∗L as stated. On
the other hand, it is well-known (Czelakowski, 2001, Thm. 1.3.7) that a logic
is protoalgebraic if and only if the class of matrices Mod∗L is closed under
subdirect products; but by the same theorems, the condition that Mod∗L is
unital implies that the logic is truth-equational, which implies that the truth
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filter of the matrices in Mod∗L is unique, and therefore in our situation Mod∗L
is closed under subdirect products if and only if the class of algebras Alg∗L
is closed under subdirect products. ��

4 Full generalized models, and the Frege hierarchy

The reduction construction allows to introduce a special class of g-models of
a logic. A basic full g-model of a logic L is one of the form �A,FiLA�, for
some algebra A. A full g-model of L is one whose reduction is a basic full
g-model; that is, a g-matrix �A,C� such that C/

∼
ΩAC = FiL(A/

∼
ΩAC). Note

that a logic, viewed as a g-matrix, is a full g-model of itself, and indeed the
largest one on the formula algebra. It turns out that AlgL is also the class of
algebraic reducts of the reduced full g-models of L; in fact, the reduced full
g-models of L are exacly those of the form �A,FiLA� with A ∈ AlgL. The
notion of a full g-model of a logic, introduced by Font and Jansana (1996)
and further studied in Font et al. (2006) and other papers, has allowed to
develop a very general approach to the algebraic study of sentential logics,
and in particular is instrumental in the following definitions.

The Frege hierarchy is a classification of logics according to what kind
of replacement properties they (and their full g-models) satisfy. In abstract
terms, replacement properties are defined algebraically as concerning congru-
ences. A g-matrix �A,C� has the property of congruence when its Frege
relation is a congruence of A, i.e., when ΛC = ∼

ΩAC. A g-matrix �A,C� has the
strong property of congruence when for any F ∈ C, the g-matrix �A,CF �
has the property of congruence, i.e., when ΛCF = ∼

ΩA
C F for all F ∈ C; note

that this means that the Frege and the Suszko operators relative to C coin-
cide. These two properties of congruence are preserved by reductions. Since
the relation ΛThL for a sentential logic L is its interderivability relation ��L,
these two properties when formulated for a sentential logic amount to natural
replacement properties of the interderivability relation.

These two properties originate the four classes of logics in the Frege hier-
archy.

Definition 12. Let L be a logic.

• L is selfextensional when, viewed as the g-matrix �Fm,ThL�, it has the
property of congruence; i.e., when the interderivability relation ��L is a
congruence of Fm.

• L is Fregean when, viewed as the g-matrix �Fm,ThL�, it has the strong
property of congruence; i.e., when for each Γ ∈ ThL, the interderivability
relation modulo Γ (i.e., the relation ΛLΓ ) is a congruence of Fm.

• L is fully selfextensional when all its full g-models have the property
of congruence.
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• L is fully Fregean when all its full g-models have the strong property of
congruence.

The notion of a selfextensional logic is due to Wójcicki (1979); see
also Wójcicki (1988, Chapter 5). The notion of a Fregean logic was intro-
duced, in a slightly restricted form, by Pigozzi (1991) and Czelakowski (1992),
and independently and as given here, by Font (1993). The other two classes
of logics were introduced by Font and Jansana (1996); the hierarchy as such
was first considered by Font (2003), and named after Frege in Font (2006).
Observe that a logic is Fregean if and only if the Suszko and the Frege opera-
tors (relative to it) coincide on the theories of the logic. In Font and Jansana
(1996, Proposition 2.40) it is shown that L is fully selfextensional if and only
if for any algebra A, the basic full g-model �A,FiLA� has the property of
congruence, and if and only if for every A ∈ AlgL the relation ΛFiLA is the
identity relation; that is, if and only if in the algebras in AlgL, different points
generate different L-filters (“L-filters separate points”). This characterization
is the clue to some of the interesting applications of fully selfextensional log-
ics to the development of an abstract duality theory (Gehrke et al., 2010); it
will be used in Theorem 15.

Some obvious relations hold between the four classes (taking into account
that a logic is always a full g-model of itself), and are depicted in Figure 2.
Two questions this graph naturally rises is whether the top (smallest) class
of fully Fregean logics is the intersection of the two middle classes of Fregean
logics and of fully selfextensional logics, and whether the lowest (largest)
class of selfextensional logics is their union. These questions were posed as
open problems in Font (2003, § 6.2) and Font (2006, p. 202); the first one is
answered affirmatively in the present paper for logics with theorems (Theo-
rem 26), and the second one is answered negatively, even for logics with very
strong properties (Example 23).

fully Fregean

�� ��fully
selfextensional

��

Fregean

��
selfextensional

Fig. 2 The classes of logics in the Frege hierarchy. Arrows indicate class inclusion.
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In order to find relations between the class of truth-equational logics and
the classes in the Frege hierarchy, we start from the following observation.
Lemma 13. Let L be a Fregean logic.
1. L satisfies the “Suszko rules” (2) displayed in Theorem 10.
2. If �A,F � ∈ Mod∗L, then F is either empty or a one-element set.
Proof. 1. Trivially, for any logic L it holds that �x,y� ∈ ΛLCL{x,y}. If
L is Fregean, the relation ΛLCL{x,y} will be a congruence, which im-
plies that for all ϕ(x,�z) ∈ Fm,

�
ϕ(x,�z),ϕ(y,�z)

�
∈ ΛLCL{x,y}. That is,

CL{x,y,ϕ(x,�z)} = CL{x,y,ϕ(y,�z)}, which amounts to the rules (2).
2. Assume that F is non-empty and take any a,b ∈ F . Since F is an L-
filter, from rules (2) it follows that for any ϕ(x,�z) ∈ Fm and any �c ∈ An,
ϕA(a,�c) ∈ F if and only if ϕA(b,�c) ∈ F . By the classical characterization
of Czelakowski (2001, Theorem 0.5.3), this says that �a,b� ∈ ΩAF , and since
the matrix is reduced this implies that a = b. Thus, F is a one-element set.

��
Since, in general, the filter of a reduced matrix can be empty only when

the algebra is trivial, we see that reduced models of Fregean logics on non-
trivial algebras must be unital. This may be a practical criterion to disprove
that a certain logic, (some of) whose reduced models are known, is Fregean.
For instance, this shows that Belnap-Dunn’s well-known four-valued logic is
not Fregean, because it has reduced models on a nontrivial algebra with two-
element designated sets, for instance those given by the two prime filters of
the four-element De Morgan lattice (usually called FOUR) that defines the
logic, which is a simple algebra; see Font (1997, p. 427).

One consequence of Lemma 13 (together with a result to be reviewed in
the next section) is the following characterization:
Theorem 14. Let L be a Fregean logic. The following conditions are equiv-
alent:

(i) L has theorems.
(ii) L is assertional.

(iii) L is truth-equational.
(iv) The Leibniz operator is injective over the L-filters of arbitrary algebras.
(v) The Leibniz operator is injective over the theories of L.

Proof. By Lemma 13, if a Fregean logic has theorems, then its class of reduced
models is unital, and therefore by Theorem 8, the logic is assertional; this
proves that (i) implies (ii). That (ii) implies (iii) is contained in Theorem 7.
Now, that (iii) implies (iv) follows from Theorem 28 of Raftery (2006), a
result that you will find here as Theorem 18, because being completely order
reflecting implies being injective. Clearly, (v) follows from (iv) as a particular
case. Finally, (v) implies (i) because, if a logic has no theorems, then ∅ and
Fm are both theories of the logic, and always Ω∅ = ΩFm = Fm×Fm, thus
breaking injectivity of the Leibniz operator on the theories of the logic. ��
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We thus see that Fregean logics with theorems are assertional, and hence
truth-equational; the situation is that depicted in Figure 1 on page 10. The
following examples confirm that there are no other relations.

• There are assertional logics that are not Fregean. We find many examples
of this situation even among the regularly algebraizable logics, such as
the global consequences of the usual normal modal logics (K ,T ,S4 ,S5,
etc.), or �Lukasiewicz’s many-valued logics, or, more generally, the logics
associated in Galatos et al. (2007) with any variety of integral residuated
lattices that is not a variety of generalized Heyting algebras. In all these
examples, the defining equation of the algebraization is of the form x ≈ �
for a constant �, so that each is the assertional logic of the corresponding
algebraic counterpart (a variety of normal modal algebras, or the corre-
sponding variety of residuated lattices, respectively). But they are not
selfextensional (the modal cases are easily shown by using Kripke models,
and the second group is shown by Bou et al. (2009, Theorem 4.12)), hence
a fortiori they are not Fregean.

• There are Fregean logics with theorems that are not regularly weakly al-
gebraizable. Examples are the already mentioned logic IPC∗ and its ax-
iomatic extensions, which are not protoalgebraic, hence in particular not
regularly weakly algebraizable. That IPC∗ is Fregean is proved by Font
and Jansana (1996, § 5.1.4), and all axiomatic extensions of a Fregean logic
are Fregean as well; and all these logics have theorems (indeed, they are
assertional).

Thus, the class of assertional logics is the smallest class in the Leibniz hier-
archy containing the Fregean logics with theorems, as shown in Figure 1.

As a final application of Theorem 8, we obtain a (weakened) version of
Theorem 14 for fully selfextensional logics.

Theorem 15. A fully selfextensional logic is assertional if and only if it is
truth-equational.

Proof. By Theorem 7, all assertional logics are truth-equational. So let L be
a fully selfextensional and truth-equational logic, and let �A,F � ∈ ModSuL.
Since ∼

ΩA
L (

�FiLA) ⊆ ∼
ΩA

L F = IdA, it follows that ∼
ΩA

L (
�FiLA) = ∼

ΩA
L F =

IdA. One of the basic characterizations of truth-equational logics (Raftery,
2006, Theorem 28) is that the Suszko operator is injective on their filters,
therefore F =

�FiLA, that is, F is the smallest L-filter of A. Thus, if a,b ∈ F ,
a and b belong to the same L-filters (namely: all). But A ∈ AlgL and for
these algebras, L-filters separate points, because L is fully selfextensional (as
commented on page 15 after Definition 12). Therefore, a = b. We have shown
that ModSuL is unital, and by Theorem 8 this implies that L is assertional.

��

Some of the non-protoalgebraic examples of assertional logics mentioned
before are fully selfextensional; for instance, Visser’s logic BPL∗, as shown
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in Bou (2001), or the �∧,∨,�,⊥�-fragment of classical logic, as follows from
Theorem 4.28 of Font and Jansana (1996).

Notice that, unlike in the Fregean case (Theorem 14), the condition that L
has theorems cannot be added as an equivalent one to those in Theorem 15;
the logics that preserve degrees of truth with respect to certain varieties
of commutative, integral residuated lattices (those that are not varieties of
generalized Heyting algebras) provide an infinity of counterexamples: all these
logics are fully selfextensional and have theorems but are not assertional;
these properties are shown in, or follow from, Corollary 4.2, Lemma 2.6,
Corollary 3.6 and Theorem 4.12 of Bou et al. (2009).

5 The full generalized models of truth-equational logics

The key characterization of truth-equational logics uses the following prop-
erty.

Definition 16. Let L be a logic, and let A be an algebra. The Leib-
niz operator ΩA is completely order-reflecting over FiLA when for all
F ∪{G} ⊆ FiLA, if

�
F ∈F

ΩAF ⊆ ΩAG then
�F ⊆ G.

The following reformulation in terms of the Suszko operator, whose proof
is an easy exercise, is very convenient:

Lemma 17. Let L be a logic, and let A be an algebra. The Leibniz operator
ΩA is completely order-reflecting over FiLA if and only if for all F ,G ∈
FiLA, if ∼

ΩA
L F ⊆ ΩAG, then F ⊆ G. ��

The main result placing the class of truth-equational logics in the Leibniz
hierarchy, due to Raftery (2006, Theorem 28), is the following.

Theorem 18. For any logic L, the following conditions are equivalent:

(i) L is truth-equational.
(ii) The Leibniz operator is completely order-reflecting over the L-filters of

arbitrary algebras.
(iii) The Leibniz operator is completely order-reflecting over the theories

of L. ��

In particular this implies that the Leibniz operator is order-reflecting, and
hence injective, on the theories of L (and on the L-filters of any algebra).

This characterization can be used to obtain an alternative proof of the
truth-equationality of Fregean logics with theorems (Theorem 14), which
needs not use assertional logics. To this end we show that the Leibniz operator
is completely order-reflecting on the theories of L, by using Lemma 17 over
the formula algebra. Let Γ,Γ � ∈ ThL be such that ∼

ΩLΓ ⊆ ΩΓ �. We have to
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show that Γ ⊆ Γ �, so let ϕ ∈ Γ . Take now any theorem ψ of L, which exists
by assumption; then in particular ψ ∈ Γ , and this implies that CL(Γ,ϕ) =
Γ = CL(Γ,ψ), that is, �ϕ,ψ� ∈ ΛLΓ . But L is Fregean, which means that
ΛLΓ = ∼

ΩLΓ . Therefore, by the assumption, �ϕ,ψ� ∈ ΩΓ �. Since also ψ ∈ Γ �,
by compatibility it follows that ϕ ∈ Γ �, as desired.

The following technical but important property will allow us to obtain
some characterizations of truth-equationality in terms of the full g-models of
the logic.

Lemma 19. Let L be any logic, A any algebra, and F ∈ FiLA. The following
conditions are equivalent:

(i) The g-matrix
�
A,(FiLA)F

�
is a full g-model of L.

(ii) For all G ∈ FiLA, if ∼
ΩA

L F ⊆ ΩAG, then F ⊆ G.

Proof. One of the central characterizations of the notion of full g-model of
a logic (Font and Jansana, 1996, Theorem 2.14) is that a g-matrix �A,C�
is a full g-model of L if and only if C = {G ∈ FiLA : ∼ΩAC ⊆ ΩAG}. Since
by (1) on page 5, ∼

ΩA(FiLA)F = ∼
ΩA

L F , in particular a g-matrix of the form�
A,(FiLA)F

�
, for some F ∈ FiLA, is a full g-model of L if and only if

(FiLA)F = {G ∈ FiLA : ∼ΩA
L F ⊆ ΩAG}. But the direct inclusion holds by (1),

and the reverse inclusion is exactly condition (ii). ��

This allows us to obtain our first characterization of truth-equational logics
in terms of the form of their full g-models: a logic is truth-equational if and
only if each of its filters determines a full g-model of the logic; we see that
the same property, limited to the theories of the logic, is also sufficient to
characterize truth-equationality.

Theorem 20. For any logic L, the following conditions are equivalent:

(i) L is truth-equational.
(ii) For every A and every F ∈ FiLA, the g-matrix

�
A,(FiLA)F

�
is a full

g-model of L.
(iii) For every Γ ∈ ThL, the g-matrix

�
Fm,(ThL)Γ

�
is a full g-model of L.

Proof. In order to prove that (i) implies (ii), assume that L is truth-
equational. Then, by Theorem 18 and Lemma 17, we see that for any A,
any F ∈ FiLA satisfies condition (ii) in Lemma 19, therefore its condition
(i) yields the present condition (ii). Clearly, (iii) is a particular case of (ii).
And finally from (iii) we can prove (i): By applying Lemma 19 to the formula
algebra, we see that (iii) amounts to saying that for every Γ,Γ � ∈ ThL, if∼
ΩLΓ ⊆ ΩΓ �, then Γ ⊆ Γ �. But by Lemma 17 applied also to the formula
algebra, this is to say that the Leibniz operator is completely order-reflecting
over the theories of L, and by Theorem 18, this implies that L is truth-
equational. ��
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The equivalence between (i) and (ii) is obtained in Albuquerque et al.
(2016) as a by-product of a more general study of compatibility operators
in abstract algebraic logic, of which the Suszko operator is a paradigmatic
example; here we have given a direct proof. It is interesting to relate this
characterization to that of protoalgebraic logics found in Font and Jansana
(1996, Theorem 3.4): A logic L is protoalgebraic if and only if every full g-
model of L is of the form

�
A,(FiLA)F

�
for some algebra A and some F ∈

FiLA. This is in some sense “dual” to the characterization of truth-equational
logics in Theorem 20. As a consequence, a logic is weakly algebraizable if and
only if its full g-models are exactly the g-matrices of the form

�
A,(FiLA)F

�

for some F ∈ FiLA; this was already obtained in Font and Jansana (1996,
Theorem 3.8), and in fact this characterization of weakly algebraizable logics
lies at the roots of the very definition of this class of logics in Font and
Jansana (1996).

We are also interested in the following extension of the previous character-
ization: A logic is truth-equational if and only if the class of its full g-models
is so-to-speak closed under the operation C �→ CF ; and again it is enough to
require this property for the full g-models over the formula algebra.
Theorem 21. For any logic L, the following conditions are equivalent:

(i) L is truth-equational.
(ii) For every full g-model �A,C� of L and every F ∈ C, the g-matrix �A,CF �

is a full g-model of L.
(iii) For every full g-model �Fm,C� of L over the formula algebra and every

Γ ∈ C, the g-matrix �Fm,CΓ � is also a full g-model of L.
Proof. (i)⇒(ii) It is a general property of the theory of full g-models that
the intersection of (the closure systems of) two full g-models of a logic pro-
duces another full g-model of the same logic; this is commented just before
Theorem 1.20 of Font et al. (2006), and is also proved in Proposition 5.96
of Font (2016). If L is truth-equational, by Theorem 20, for every F ∈ FiLA,
the g-matrix

�
A,(FiLA)F

�
is a full g-model of L. Now, if �A,C� is a full

g-model of L, C ⊆ FiLA, and hence clearly C ∩ (FiLA)F = CF . Therefore, by
the mentioned general property, the g-matrix �A,CF � is a full g-model of L,
as desired.
(iii) is a particular case of (ii), and the implication (iii)⇒(i) is trivial because
the g-matrix �Fm,ThL� is always full (indeed, it is a basic full g-model, by
definition), therefore our (iii) implies the condition in Theorem 20(iii) as a
particular case, and hence implies that L is truth-equational. ��

6 Applications to the hierarchies

The preceding characterization of the full g-models of truth-equational logics
allows us to refine the Frege hierarchy inside this class.
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Theorem 22. A truth-equational logic is fully selfextensional if and only if
it is fully Fregean.

Proof. Every fully Fregean logic is fully selfextensional, so in one direction
there is nothing to prove. Now assume that L is a truth-equational and fully
selfextensional logic, and let �A,C� be any full g-model of L and F ∈ C.
Since L is truth-equational, by Theorem 21 the g-matrix �A,CF � is also a
full g-model of L. Then, since L is fully selfextensional, the g-matrix has the
property of congruence. This shows that all the full g-models of L have the
strong property of congruence, that is, that L is fully Fregean. ��

Thus, for truth-equational logics (hence, in a large part of the Leibniz
hierarchy) the Frege hierarchy reduces to three classes:

fully Fregean (and truth-equational)

��
Fregean (and truth-equational)

��
selfextensional (and truth-equational)

These three classes are different, and the lowest one is still a proper subclass
of that of all truth-equational logics, as the following considerations show.
• The last mentioned fact (i.e., that not all truth-equational logics are self-

extensional) is witnessed by the many algebraizable logics that are not
selfextensional, as already mentioned after Theorem 14.

• Babyonyshev (2003) has constructed a Fregean logic that is not fully
Fregean. This logic, which has a proof-theoretic definition, has theorems,
therefore by Theorem 14 it is assertional, and hence truth-equational.

• Next we construct a truth-equational and non-protoalgebraic logic that is
selfextensional but not Fregean:

Example 23. Consider the algebra A = �{0,1,2},�,¬�, where � and ¬ are
two 1-ary operations, defined as follows:

¬1 = �1 = �0 = 0 ¬0 = �2 = 1 ¬2 = 2,

and consider the logic L in the language ��,¬� determined by the matrix
�A,{1}�.
Fact 1. L is assertional, and hence truth-equational: To see this, note that
in A , ¬��a = 1 for all a ∈ A, so that ¬��x is a constant term of A, and
L is the assertional logic of the class {A} with � := ¬��x. Therefore, by
Theorem 7, L is truth-equational, with {x ≈ ¬��x} as defining equation.
Fact 2. L is not Fregean: To see this, it is enough to check, from the
definition, that

�x,¬�x ��L �x,¬x
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(because no evaluation makes the two premises on either side simultaneously
equal to 1), and that

�x,¬¬�x �L ¬¬x

(just evaluate x to 2). Therefore ΛLCL{�x} is not a congruence with respect
to the operation ¬.
Fact 3. If ϕ ��L ψ, then A � ϕ ≈ ψ: Since all connectives are unary, there
are two variables x and y such that Var{ϕ,ψ} ⊆ {x,y}.

We first construct all the terms in the variables x and y up to equivalence
in A. Observe that this is equivalent to ask for a set of representatives of the
congruence classes that form the universe of the free algebra FmA{x,y} over
the variety generated by A with two free generators. We reason as follows.
The set AA2 of binary functions on A can be given naturally the structure
of an algebra AA2 . Then let πi : A2 → A be the projection map on the i-th
component, for i ∈ {1,2}, and let C be the subalgebra of AA2 generated by
{π1,π2}. We claim that

C =
�

π1 ,π2 ,�π1 ,�π2 ,¬π1 ,¬π2 ,��π1 ,¬�π1 ,¬�π2 ,¬��π1
�

.

The inclusion from right to left follows from the fact that C is a subalgebra
of AA2 , whereas the other one is a consequence of the fact that the identities
¬¬x ≈ x , ��x ≈��y , ���x ≈��x and �¬x ≈�x hold in A.

Now, recall that the free algebra FmA{x,y} is isomorphic to C via the
map sending the equivalence classes of x and y to π1 and π2 respectively; see
for instance (Bergman, 2011, Theorem 4.9). Applying this fact to our claim,
we conclude that

T (x,y) :=
�

x,y,�x,�y,¬x,¬y,��x,¬�x,¬�y,¬��x
�

is the set of terms in two variables up to equivalence in A.
Since Var{ϕ,ψ} ⊆ {x,y}, there are ϕ�,ψ� ∈ T (x,y) such that A � ϕ ≈ ϕ�

and A � ψ ≈ ψ�. By Lemma 1, ϕ ��L ϕ� and ψ ��L ψ�, and since by assump-
tion ϕ ��L ψ, it follows that ϕ� ��L ψ�. But it is easy to check, working case
by case, that no two distinct terms in T (x,y) are interderivable in L. There-
fore, we conclude that ϕ� = ψ�. This implies that A � ϕ ≈ ψ, as required.
Fact 4. L is selfextensional: As a consequence of Fact 3 and Lemma 1,
α ��L β if and only if A � α ≈ β. But this last relation is clearly a congru-
ence. Therefore, ΛL = ��L is a congruence, that is, L is selfextensional.
Fact 5. L is not protoalgebraic: This is because its language contains only
unary connectives. As a direct consequence of the characterization in The-
orem 1.1.3 of Czelakowski (2001), a protoalgebraic logic in such a language
should be trivial, which L is not. ��

This example also answers, in the negative, an open problem on the struc-
ture of the Frege hierarchy, posed in Font (2003, p. 78) and Font (2006,
p. 202): that of whether the class of selfextensional logics is the union of the
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class of Fregean logics and the class of fully selfextensional logics. The logic
constructed in Example 23 is selfextensional but not Fregean, hence not fully
Fregean, and this in turn implies (by Theorem 22, since it is truth-equational)
that it is not fully selfextensional either.

For finitary logics the result in Theorem 22 produces another refinement
of the Frege hierarchy.

Corollary 24. A finitary and weakly algebraizable logic is fully selfexten-
sional if and only if it is Fregean, and if and only if it is fully Fregean.

Proof. By Corollary 80 of Czelakowski and Pigozzi (2004), a finitary pro-
toalgebraic logic is Fregean if and only if it is fully Fregean. Since weakly
algebraizable logics are protoalgebraic, this applies to them, and since they
are also truth-equational, merging this with Theorem 22 we obtain the stated
result. ��

Thus, for finitary weakly algebraizable logics (hence, a fortiori, for finitary
algebraizable logics), the Frege hierarchy reduces to only two classes, the
selfextensional and the Fregean. That in this case these two classes are indeed
different is shown by the following construction.

Example 25. Consider the language �→,� ,a,b,c,�� of type �2,1,0,0,0,0�,
and the set A := {a,b,c,1} with the order structure given by the following
graph:

1•

a • b • • c

We equip it with the structure of an algebra A = �A,→,� ,a,b,c,1� of the
above similarity type, where the four constants are interpreted in the obvious
way, and for every x,y ∈ A,

x → y :=
�

1 if x � y,
y otherwise,

�x :=
�

b if x ∈ {1,a,c},
1 otherwise.

Observe that the implicative reduct of A is a Hilbert algebra.
Let L be the logic determined by the g-matrix �A,C�, where

C :=
�

{1} ,{a,1} ,{c,1} , A
�

.

Observe that all the members of C are implicative filters.
Fact 1. L is finitary: It is well known that any logic defined by a finite set
of finite matrices (hence, in particular, by a finite g-matrix) is finitary.
Fact 2. L is a finitely regularly algebraizable logic: The implicative fragment
of L is a logic defined by a family of implicative filters of a Hilbert algebra,
and is therefore an implicative logic in the sense of Rasiowa (1974). Moreover,
it is easy to check that
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x→y ,y →x �L �x→�y.

As a consequence, L itself is an implicative logic, hence a finitely regularly
algebraizable logic (Blok and Pigozzi, 1989, § 5.2).
Fact 3. L is selfextensional: Observe that the closure system C separates
points in A, therefore ΛC = IdA, and hence ∼

ΩAC = IdA, that is, the g-
matrix �A,C� has the property of congruence (and is reduced). This easily
implies (Czelakowski and Pigozzi, 2004, Theorem 82) that �Fm,ThL� has
the property of congruence, that is, the logic L is selfextensional.
Fact 4. L is not fully Fregean: It is easy to see that the following deductions
hold

∅ �L � a,c �L x b �L x,

and that this implies that FiLA = C. Therefore, �A,C� is a full g-model of
L. Now, consider the closure system C{a,1} =

�
{a,1},A

�
. It is clear that

�c,b� ∈ ΛC{a,1}, because c and b belong to the same members of C{a,1}, and
that ��c,�b� /∈ ΛC{a,1}, because �c = b /∈ {a,1} while �b = 1 ∈ {a,1}. Hence
the g-model �A,C{a,1}� does not have the property of congruence, which is
to say that the full g-model �A,C� has not the strong property of congruence.
We conclude that L is not fully Fregean.
Fact 5. L is neither Fregean nor fully selfextensional: This follows from
Fact 4 and Corollary 24, taking into account that L is finitary (Fact 1) and
weakly algebraizable (Fact 2). ��

This example also solves an old open problem in abstract algebraic logic:
that of whether, for protoalgebraic logics, to be selfextensional implies to
be fully selfextensional; the general case was solved by Babyonyshev (2003).
Example 25 shows that this is not the case, even for logics with much stronger
properties, namely for finitely regularly algebraizable logics.

The reader may have noticed that Example 25 solves the issues addressed
by Example 23 as well. However, the latter has the additional interest, over
the former, of being in some sense “minimal” as an example of a matrix-
determined non-Fregean logic, because it is defined by a 3-element matrix,
and, trivially, all the logics determined by 2-element (g-)matrices are Fregean.

Finally, by combining several of the previous results, we obtain a result
that clarifies the structure of the Frege hierarchy alone (although our proof
goes through a class in the Leibniz hierarchy): for logics with theorems the
top (smallest) class of the Frege hierarchy is actually the intersection of its
two middle classes.

Theorem 26. A logic with theorems is fully Fregean if and only if it is both
Fregean and fully selfextensional.

Proof. Trivially, if a logic is fully Fregean, then it is both Fregean and fully
selfextensional. For the converse, suppose that a logic has these two prop-
erties. By Theorem 14, the logic will be truth-equational, and then we can
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apply Theorem 22, which tells us that, since it is assumed to be fully selfex-
tensional, it is in fact fully Fregean. ��

This gives a partial, positive answer (for logics with theorems) to another
of the open problems formulated in Font (2003, § 6.2) and Font (2006, p. 202).
Now, it becomes an Open Problem whether the assumption that the logic
has theorems can be dispensed with in this result.
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