
LOGICS OF VARIETIES, LOGICS OF SEMILATTICES, AND

CONJUNCTION

JOSEP MARIA FONT AND TOMMASO MORASCHINI

Abstract. This paper starts with a general analysis of the problem of how to

associate a logic with a given variety of algebras, and shows that it has a positive
solution for two of the standard procedures of performing this association, and

a negative one in the third. Then the paper focuses on the case of the “logics of

semilattices”, which are defined as the logics related to the variety of semilatices
via two of the standard procedures of abstract algebraic logic. We study their

main properties, classify them in the Leibniz hierarchy and the Frege hierarchy
(the two hierarchies of abstract algebraic logic), and study the poset they form
(in particular, we find its least element and its two unique maximals, and prove

it is atomless). Even if there is an infinity of such logics of semilattices, it is
not known whether there are logics related to the variety of semilattices via the
Leibniz reduction too; we discuss this issue and provide a partial solution to

this problem. The final section studies one of the maximals of this poset, the
conjunctive fragment of classical propositional logic; among other properties we
give two new characterisations of this logic, one of them in terms of a property

of the Leibniz operator.

Introduction

The main goal of this paper is to study, with the tools of abstract algebraic logic,
a (rather large) class of logics that are associated with the variety of semilattices.
Its starting point, however, is actually the general issue of studying the class of all
logics associated with a given variety of algebras, of an arbitrary signature. To give
the phrase “associated with” a precise, uniform meaning, we build upon the fact
that in abstract algebraic logic there are three standard procedures to associate a
class of algebras with a given logic L: the class Alg∗L of the Leibniz-reduced algebras
of L, its algebraic counterpart AlgL, which is the class of its Tarski-reduced algebras,
and its intrinsic variety VL (Section 1 contains all needed definitions); note that the
first two need not be varieties. Section 2 starts by posing the questions of whether,
given a variety of algebras V, there is a logic associated with V through any of these
three procedures. We provide the example of a variety which is not of the form
Alg∗L for any logic L (Example 2.1), but for each variety (of an arbitrary signature)
V we construct a logic LV (Definition 2.2) such that AlgLV = VLV = V (Theorem
2.5), thus giving an affirmative answer to the other two questions. We study the
main properties of LV, classify it under the two hierachies of abstract algebraic logic,
and show it is the weakest logic L such that VL = V (Corollary 2.10). Finally, we
show (Corollary 2.12) that if there is a positive answer to the first question, then
the logic LV will be such a positive answer as well, and indeed the weakest one. The
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conclusion of this section is that “every variety is the variety of a logic” in two of
the standard senses.

The rest of the paper deals with the class of logics associated with the variety of
semilattices SL in the second of the standard ways. We call logics of semilattices1

the logics L in the signature 〈·〉 of type 〈2〉 such that AlgL = SL. Semilattices form
the ordered skeleton of a very large number of algebras arising in the field of logic;
most of the times the semilattice operation of these algebras is taken to describe
the behaviour of the conjunction of the logic, while in a few others it represents
disjunction. Algebraically, semilattices are extremely well-behaved structures, with
a pleasant equational theory and an easily solvable word problem. Thus, we find
these structures to be of enough independent interest, and devote Sections 3 and 4
to the study of their corresponding logics.

One of these logics is, obviously, LSL; we characterise logics of semilattices as
the non-trivial extensions of LSL, and show that their intrinsic variety is SL as well
(Theorem 3.3). We classify these logics in the two hierarchies of abstract algebraic
logic, showing that they are never protoalgebraic nor truth-equational, but they
are always selfextensional (Lemmas 3.5 and 3.7). We obtain characterisations of
the Leibniz operator in an arbitrary semilattice (Lemma 3.8) and of the class of
Leibniz-reduced matrices of LSL (Theorem 3.9). As an approximation to the problem
of whether SL is the class of Leibniz-reduced algebras of LSL, which is still open,
we show that this class (obviously a subclass of SL) contains all semilattices with
sectionally finite height (i.e., the meet-semilattices with all elements having finite
height), hence all finite semilattices in particular. Remark that a similar question
(whether the class of distributive lattices is the class of Leibniz-reduced algebras
of the fragment of classical logic with conjunction and disjunction) was answered
in the negative in [10]. In a companion paper [13] we have applied the technique
developed here to show that in every semilattice with sectionally finite height the
Leibniz operator establishes a bijection between a certain family of subsets and the
set of all congruences.

In Section 4 we study the poset of all logics of semilattices. Among several
properties, we prove that its maximal elements are the fragments of classical logic
with just conjunction (L∧) and with just disjunction (L∨), that the latter is the
only logic in the poset that is not below L∧ (Theorem 4.2), and that this poset is
atomless (Theorem 4.4) by identifying two infinite descending chains in it. Figure 2
on page 21 depicts the ordering relations in the relevant part of this poset.

Finally in Section 5 we study a particularly important logic of semilattices, namely
the logic of classical conjunction L∧. It is a very simple yet powerful, and well-known
logic, but we think we have been able to say something new about it. We prove
that L∧ is the unique logic whose only non-trivial Leibniz-reduced algebra (up to
isomorphism) is the two-element semilattice (Theorem 5.5); this is a rather unusual
feature, because, while any logic is characterised by the class of its Leibniz-reduced
matrices, it is in general not possible to characterise it solely in terms of its class of
Leibniz-reduced algebras. Moreover, we characterise this logic as the unique logic
of semilattices whose Leibniz operator disconnects points on filters over arbitrary
algebras (Theorem 5.6). We end the paper by characterising the full g-models of this

1An alternative obvious name was “semilattice-based logics”, but this has already been used in
the algebraic logic literature [9, 16] to denote a related, but more general notion.
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logic and displaying a finite presentation of a Gentzen system that is fully adequate
for it (Theorem 5.8 and Corollary 5.9).

Among the most relevant literature on the topic of this paper we mention [1, 5, 7,
10, 14, 15, 17, 19]. The construction of VL was already considered by Rautenberg
in [20], although he focused on the problem of the finite axiomatizability of logics
associated with varieties in this way.

1. Preliminaries

Here we present a brief survey of the main definitions and results of abstract
algebraic logic we will make use of along the article; a systematic exposition can
be found for example in [2, 3, 8, 11, 12, 22]. We begin by the definition of logic.
In order to do this recall that a closure operator over a set A is a monotone
function C : P(A) → P(A) such that X ⊆ C(X) = C

(
C(X)

)
for every X ∈ P(A)

and that a closure system on A is a family C ⊆ P(A) closed under arbitrary
intersections and such that A ∈ C. It is well-known that the closed sets (fixed
points) of a closure operator form a closure system, which will be denoted as C, and
that given a closure system C one can construct a closure operator C by letting
C(X) =

⋂
{Y ∈ C |X ⊆ Y } for every X ∈ P(A). These trasformations are indeed

inverse to one another.
Then, fixed an algebraic type L , we denote by Fm the set of formulas over L

built up with countably many variables Var denoted by x, y, z, etc., and by Fm the
corresponding absolutely free algebra with countably many free generators. From
now on we will assume that we are working with a fixed algebraic type and that
x 6= y, unless explicitly warned.

By a logic L we understand a closure operator CL : P(Fm) → P(Fm) which
is structural in the sense that σ

(
CL(Γ )

)
⊆ CL

(
σ(Γ )

)
for every Γ ⊆ Fm and

every endomorphism (or, equivalently, substitution) σ : Fm → Fm. It is worth
remarking that finitarity of the closure operator is not assumed. The set of closed
sets of a logic (its theories) is denoted by ThL. Given Γ ∪ {ϕ} ⊆ Fm we write
Γ L̀ ϕ to denote the fact that ϕ ∈ CL(Γ ). Since L will denote always an arbitrary
logic, we will skip, in the formulation of our results, assumptions like “let L be a
logic”. Given two logics L and L′, we will write L 6 L′ if CL(Γ ) ⊆ CL′(Γ ) for
every Γ ⊆ Fm; in this case we say that L′ is an extension of L, and also that
L is weaker than L′; this relation 6 is an ordering relation between logics. The
intersection of a family of logics {Li}i∈I is the operator CL defined, for every
Γ ⊆ Fm, as CL(Γ ) :=

⋂
i∈I CLi(Γ ); it is easy to prove that this is a logic, and it is

clearly the meet of the family with respect to the order 6 just defined.
The above general definition of logic allows for two pathological cases, which

we shall need to avoid at some places in our analysis. More precisely, a logic L
is inconsistent when ThL = {Fm} and it is almost inconsistent when ThL =
{∅, Fm}. A logic L is trivial when it is either inconsistent or almost inconsistent.

Lemma 1.1. A logic L is trivial if and only if x L̀ y. �

We now turn to describe how to construct algebra-based semantics for a logic. We
will denote algebras with italic boldface capital letters A, B, C, etc. (with universes
A, B, C, etc. respectively). As in the case of logics, we will skip assumptions like
“let A be an algebra” in the formulation of our results. One of the natural ways of
building models for a logic out of algebras is to consider the elements of the algebras
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as truth values and select some of them as representing truth. More precisely, given
a logic L and an algebra A, a set F ⊆ A is a deductive filter of L over A when

if Γ L̀ ϕ, then for every homomorphism h : Fm→ A,

if h[Γ ] ⊆ F , then h(ϕ) ∈ F
for every Γ ∪ {ϕ} ⊆ Fm. We denote by FiL(A) the set of deductive filters of L
over A, which turns out to be a complete lattice when ordered under set-theoretical
inclusion. A pair 〈A, F 〉 is a matrix when A is an algebra and F ⊆ A, and a
matrix 〈A, F 〉 is a model of a logic L when F ∈ FiL(A).

Matrices of the form 〈A, F 〉 are associated with congruences of A in a way
independent from any logic. In order to explain how, let us fix some notation.
Given an algebra A we will denote by Co(A) its lattice of congruences, and given
θ ∈ Co(A) and a ∈ A we will denote by JaKθ the congruence class of a modulo θ.
Then θ ∈ Co(A) is compatible with the set F when

if a ∈ F and 〈a, b〉 ∈ θ, then b ∈ F
for every a, b ∈ A. It is easy to prove that given any F ⊆ A, there exists the largest
congruence of A compatible with F . We denote this congruence by ΩF and refer
to it as the Leibniz congruence of F (over A). Observe that Ω∅ = ΩA = A×A.
The matrix 〈A, F 〉∗ := 〈A/ΩF, F/ΩF 〉 is the Leibniz reduction of 〈A, F 〉 and
a matrix 〈A, F 〉 is Leibniz-reduced when ΩF = IdA, the identity relation on
A. The definition of Leibniz congruence gives rise to a map Ω : P(A) → Co(A),
called the Leibniz operator, whose behaviour over deductive filters of the logic
captures interesting facts concerning the definability of truth and that of equivalence
in selected classes of logics; this is one of the central topics studied in abstract
algebraic logic. However, for the present aim, it is enough to remark the fact that
the Leibniz congruence allows us to associate with a logic L a special class of models
and a special class of algebras:

Mod∗L :=
{
〈A, F 〉 : F ∈ FiL(A) and ΩF = IdA

}
Alg∗L :=

{
A : there is F ∈ FiL(A) such that ΩF = IdA

}
.

We will refer to matrices in Mod∗L as to Leibniz-reduced models of L, and to
algebras in Alg∗L as to Leibniz-reduced algebras of L.

Another natural way of building algebra-based models for logics is achieved by
using generalised matrices, or g-matrices for short. The idea that lies behind
this construction is that of modelling the consequence relation of the logic instead
of some notion of truth. More precisely, a g-matrix is a pair 〈A, C〉 where A is an
algebra and C a closure system on its universe, and it is a g-model of a logic L
when, for every Γ ∪ {ϕ} ⊆ Fm,

if Γ L̀ ϕ, then for every homomorphism h : Fm→ A, h(ϕ) ∈ C
(
h[Γ ]

)
,

where C is the closure operator associated with C. It is easy to see that 〈A, C〉 is a
g-model of L if and only if C ⊆ FiL(A).

As is to be expected, there is a natural way to associate a congruence with a
g-matrix 〈A, C〉, as it is easy to prove that the intersection

⋂
F∈CΩF is the largest

congruence compatible with every F ∈ C; we denote this congruence by
∼
ΩC, and

refer to it as to the Tarski congruence of C (over A). It is worth remarking that,
given a closure system C on A, there is a strong connection between its Tarski
congruence and its Frege relation ΛC :=

{
〈a, b〉 ∈ A×A : C{a} = C{b}

}
, namely
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that
∼
ΩC is the largest congruence of A below ΛC. These constructions apply

to logics as particular cases of g-matrices; then we write
∼
ΩL and ΛL instead of∼

ΩCL and ΛCL, respectively; the relation ΛL is also denoted by a`L. A logic L is
selfextensional when ΛL is a congruence, in which case ΛL =

∼
ΩL.

The Tarski congruence allows us to associate with a logic L another class of
algebras

AlgL :=
{
A : there is a g-model 〈A, C〉 of L such that

∼
ΩC = IdA

}
,

called the algebraic counterpart of L, or also the class of Tarski-reduced
algebras of L. The third class of algebras associated with a logic L we shall
consider is its intrinsic variety

VL := V(Fm/
∼
ΩL),

where, for any class K of algebras, V(K) denotes the variety generated by K; the
Tarski congruence of a logic

∼
ΩL has been always present, implicitly or explicitly,

in algebraic logic, as in [20, 22], and the class VL was also introduced in [20], with
different notation.

The inclusions that hold in general between the three classes of algebras associated
with a logic L we have considered are Alg∗L ⊆ AlgL ⊆ VL; moreover, it is also
possible to prove that V(Alg∗L) = V(AlgL) = VL and that AlgL = Psd(Alg∗L),
where Psd is the subdirect products operator. In general the three classes may be
different; while for a large class of logics (which includes all protoalgebraic logics,

but also many others) one can show that Alg∗L = AlgL, in general it is AlgL that
deserves the title of “algebraic counterpart” of the logic L, as is argued in [11, 12].

A logic L is fully selfextensional when for any algebra A, the relation ΛFiLA
is a congruence, in which case ΛFiLA =

∼
ΩFiLA; equivalently, when for any

A ∈ AlgL , ΛFiLA = IdA, which says that different elements generate different
L-filters.

We conclude this section with a brief remark on free algebras. Given a class of
algebras K, we will denote by FmK the free algebra over K with countably many
free generators. Moreover we will denote by FmK{x1, . . . , xn} the free algebra
over K with n distinct free generators. Since free algebras are quotients of formula
algebras, we will denote their elements as JϕK, JψK etc., omitting the subindex that
would denote the corresponding congruence. The fact that Fm/

∼
ΩL is always the

free algebra over VL with countably many free generators implies the following fact,
which we will use later on.

Lemma 1.2. Let α, β ∈ Fm. If AlgL � α≈ β, then α a`L β. �

2. From varieties to logics

We would like to begin our study by considering the general problem of con-
structing logics close to varieties (classes of algebras axiomatised by equations). The
interest for this issue can traced back to the work of Rautenberg [20], but no general
study has been carried on until now. Corresponding to the three ways of associating
a class of algebras with a logic L, it is natural to ask the following three questions,
given an arbitrary variety V:

Question 1. Is there a logic L such that Alg∗L = V?

Question 2. Is there a logic L such that AlgL = V?
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Question 3. Is there a logic L such that VL = V?

It is clear that a positive answer to Question 1 would imply a positive one to
Question 2, because one can show that AlgL = PsdAlg

∗L and varieties are closed
under subdirect products. It is clear as well that a postive answer to Question 2
would imply a positive one to Question 3, since VL = V(AlgL). However the next
example shows that Question 1 cannot be answered in general in the positive.

Example 2.1. There is no logic L for which Alg∗L is the variety SG of commutative
semigroups. This class is axiomatised by the two equations

x·y ≈ y ·x x·(y ·z)≈ (x·y)·z.

Consider the three-element null semigroup 3, i.e., the three-element semigroup on
a set 3 with an element 0 ∈ 3 such that a·b = 0 for every a, b ∈ 3. We check that
for each F ⊆ 3 the matrix 〈3, F 〉 is not reduced. If F ∈ {3, ∅}, this is clear. Then
suppose F /∈ {3, ∅}. It is easy to prove that for every {a, b} ⊆ 3 such that a 6= b,
the equivalence relation with blocks {a, b} and {c} (where c is the third element of
3, different from a and b) is a congruence and is compatible with F for F = {a, b}
and for F = {c}. This easily yields that ΩF 6= Id3 in all cases. �

Even if Question 1 cannot be answered in general in the positive, we will prove
that Questions 2 and 3 can indeed be so. In order to do this, we construct the logic
which “approximates best” the variety V in a certain sense:

Definition 2.2. Let V be a variety. LV is the logic defined by the class of matrices{
〈A, F 〉 : A ∈ V, F ⊆ A

}
.

In order to shorten notation we write Γ `V ϕ instead of Γ L̀V
ϕ. The fact that

LV is indeed the logic whose class of Leibniz-reduced algebras best approximates
V will be proved in Corollaries 2.10 and 2.12. In order to prove this, we need to
go through some preliminary results; we begin by providing a characterisation of
deductions from single formulas in LV.

Lemma 2.3. Let V be a variety and α, β ∈ Fm. The following conditions are
equivalent:

(i) α `V β.
(ii) α a`V β.

(iii) V � α≈ β.

Proof. (i)⇒(iii) Assume α `V β and take any homomorphism h : Fm→ A with
A ∈ V. By definition

〈
A,
{
h(α)

}〉
is a model of LV, therefore h(β) ∈

{
h(α)

}
, that

is, h(α) = h(β). Thus, V � α≈ β.

(iii)⇒(ii) Suppose that V � α≈ β and consider any matrix 〈A, F 〉 such that A ∈ V.
Now, pick an homomorphism h : Fm→ A such that h(α) ∈ F ; since V � α≈ β, we
conclude that h(β) ∈ F . By definition of LV we conclude that α `V β. The proof
that β `V α is analogous.

(ii)⇒(i) is straightforward. �

This lemma in particular implies that the relation a`V is a congruence of the
formula algebra. Therefore:

Corollary 2.4. For every variety V, the logic LV is selfextensional. �



LOGICS OF VARIETIES, LOGICS OF SEMILATTICES, AND CONJUNCTION 7

The fact that deductions of LV from one premise correspond exactly to the
equations that hold in V allows us to answer Questions 2 and 3 in the positive:

Theorem 2.5. Let V be a variety.

1. If A ∈ V is subdirectly irreducible, then A ∈ Alg∗LV.

2. VLV = AlgLV = V.

Proof. 1. Consider any non-trivial subdirectly irreducible algebra A ∈ V. It is well
known that

〈
Co(A) r {IdA},⊆

〉
has a minimum element θ which is a principal

congruence [6, Theorem II.8.4]. Thus, there are a, b ∈ A such that a 6= b and θ is
the congruence generated by the pair 〈a, b〉. Then observe that by definition the
matrix

〈
A, {a}

〉
is a model of LV. From the fact that Ω{a} is compatible with {a}

and that b 6= a, it follows that 〈a, b〉 /∈ Ω{a} and therefore θ * Ω{a}. This implies

that Ω{a} = IdA. Hence we conclude that
〈
A, {a}

〉
is reduced and therefore that

A ∈ Alg∗LV.

2. Since AlgLV = PsdAlg
∗LV and by point 1 Alg∗LV contains every subdirectly

irreducible member of V, we conclude that V ⊆ AlgLV. Then we turn to prove the
other inclusion. If α≈ β is one of the equations defining V, by Lemma 2.3 we know
that α a`V β, and from Corollary 2.4 it follows that 〈α, β〉 ∈ ∼ΩL. But, since

∼
ΩL

is fully invariant, this means that VL � α ≈ β. Since VL = V(AlgL), we conclude
that AlgL � α ≈ β too. Therefore AlgLV ⊆ V, and we conclude that AlgLV = V.
Finally, since VLV is the closure of AlgLV under V and AlgLV is already a variety,
VLV = AlgLV. �

Corollary 2.6. For every variety V, the logic LV is fully selfextensional and filter-
distributive.

Proof. From Definition 2.2 it follows that FiLV
(A) = P(A) when A ∈ V, and

after Theorem 2.5 this holds in any A ∈ AlgLV. This immediately implies
that ΛFiLV

(A) = IdA in these algebras, which says that LV is fully selfexten-
sional, and that FiLV

(A) is a Boolean algebra, in particular a distributive lattice.
Since for any algebra A the quotient A/

∼
ΩFiLV

(A) ∈ AlgLV and the projection
π : A → A/

∼
ΩFiLV

(A) extends to a lattice isomorphism between FiLV
(A) and

FiLV
(A/

∼
ΩFiLV

(A)), it follows that FiLV
(A) is distributive for any algebra A, that

is, LV is filter-distributive. �

Theorem 2.7. For every non-trivial variety V, the logic LV is neither conjunctive
nor disjunctive.

Proof. We reason by contraposition. Suppose that LV is conjunctive. This means
that there is a term-definable binary connective ∧ such that x, y `V x∧y, x∧y `V x
and x ∧ y `V y. Applying Lemma 2.9 to the last two deductions we obtain that
V is a model of the equations x ∧ y ≈ x and x ∧ y ≈ y. Hence we conclude that
V � x ≈ y and therefore that V is trivial.

Then consider the case in which LV is disjunctive. This means that there is
a term-definable binary connective ∨ such that LV is a model of the following
Gentzen-style rules:

Γ, α� γ Γ, β � γ

Γ, α ∨ β � γ

Γ, α ∨ β � γ

Γ, α� γ

Γ, α ∨ β � γ

Γ, β � γ
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In particular this implies that x `V x ∨ y and y `V x ∨ y. By Lemma 2.3 this yields
that V is a model of x ≈ x ∨ y and y ≈ x ∨ y. Hence we conclude that V � x ≈ y
and therefore that V is trivial. �

This result is particularly interesting in view of the large existing literature in
algebraic logic that relates filter-distributivity with the property of being disjunctive;
see [8, § 2.5], and remark that by Corollary 2.14 the logic LV escapes the methods
and results of [8].

Lemma 2.3 suggests the rather natural question of whether, instead of working
with LV, one could have defined a logic by a Hilbert calculus with the rules corre-
sponding to the equations defining the variety V and gain the same result. The next
example shows that in general this is not the case.

Example 2.8. Consider the variety of semilattices SL, which is axiomatised by the
following equations: x ≈ x·x, x·y ≈ y ·x and x·(y ·z) ≈ (x·y)·z, and consider the
logic L defined by the following six Hilbert-style rules:

x a` x·x x·y a` y ·x x·(y ·z) a` (x·y)·z.
Even if one might guess that the algebraic counterpart of L should be the variety
of semilattices, it is not. For let 〈Z3,+〉 be the additive semigroup of integers
modulo 3. It is easily proved that the matrix 〈Z3, {1, 2}〉 is reduced. Now we turn
to prove that it is a model of L. It is clearly a model of the rules x·y a` y ·x and
x·(y ·z) a` (x·y)·z, because Z3 is commutative and associative. Moreover it is a
model of the rule x a` x·x, because 1 + 1 = 2 and 2 + 2 = 1 while 0 + 0 = 0 in Z3.
Therefore Z3 ∈ Alg∗L ⊆ AlgL; since Z3 /∈ SL, we conclude that AlgL 6= SL, and
hence that L 6= LSL.

It is worth remarking that the fact that Z3 /∈ SL yields also that VL 6� x≈ x·x,
against another natural supposition one may have done when looking at the rules
defining L. Thus we see that 〈x, x·x〉 ∈ ΛL while 〈x, x·x〉 /∈ ∼

ΩL, which implies
that L is not selfextensional. �

Another fundamental property of LV we will make use of in the next section is
that its deductions are determined by the deductions from a single premise. More
precisely, we say that a logic L is unitary when for every Γ ∪{ϕ} ⊆ Fm, if Γ L̀ ϕ,
then there is γ ∈ Γ such that γ L̀ ϕ.

Lemma 2.9. For every variety V, the logic LV is unitary.

Proof. Suppose that Γ `V ϕ. Then we consider the quotient projection π : Fm→
FmV and observe that

〈
FmV,

{
JγK : γ ∈ Γ

}〉
is a model of LV by definition,

because FmV ∈ V as V is a variety. This implies that JϕK = π(ϕ) ∈
{
JγK : γ ∈ Γ

}
and therefore that there is a formula γ ∈ Γ such that V � γ ≈ ϕ. By Lemma 2.3
this means that γ `V ϕ. �

We believe that the following corollaries justify the statement that LV is indeed
the logic closest to V from the point of view of the Leibniz operator.

Corollary 2.10. Let V be a variety. If VL = V, then LV 6 L and consequently
Alg∗L ⊆ Alg∗LV ⊆ V. Thus, LV is the weakest logic whose intrinsic variety is V.
Moreover, LV is the weakest logic L such that AlgL = V.

Proof. Suppose that VL = V and that Γ `V ϕ. From Lemma 2.9 it follows that
there is a formula γ ∈ Γ such that γ `V ϕ. By Lemma 2.3 this is equivalent to the
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fact that V � γ ≈ ϕ. By the fact that VL = V(AlgL) and Lemma 1.2, this implies
that γ L̀ ϕ and hence that Γ L̀ ϕ. This shows that LV 6 L, and this implies that
Alg∗L ⊆ Alg∗LV ⊆ AlgLV = V. The final statement follows from the previous one
because the assumption AlgL = V implies that VL = V. �

The next example shows that the converse of Corollary 2.10 does not hold in
general; nevertheless, in Theorem 3.3 we will show that this is the case for the
variety of semilattices (disregarding the trivial logics).

Example 2.11. Consider the variety HA of Heyting algebras. From Theorem 2.5
it follows that AlgLHA = HA. Then let IPC be the intuitionistic propositional
logic. It is well-known that VIPC = HA, therefore, by Corollary 2.10, we have that
LHA 6 IPC. Let CPC be the classical propositional logic and BA the variety of
Boolean algebras. It is well-known that IPC 6 CPC and VCPC = BA. Therefore
we have that LHA 6 CPC and VCPC = BA 6= HA. �

Corollary 2.12. Let V be a variety. There is a logic L such that Alg∗L = V if and
only if Alg∗LV = V. In such a case, LV is the weakest of all such logics.

Proof. If Alg∗L = V, then also AlgL = V, and therefore by Corollary 2.10 we have
that LV 6 L. This yields that V = Alg∗L ⊆ Alg∗LV. But from Theorem 2.5 it
follows that Alg∗LV ⊆ V, which implies the equality. The converse implication is
straightforward. In passing, we have also shown the last statement. �

Thus, if there is some solution to Question 1, our logic LV is indeed one, and
actually the weakest one. This considerably simplyfies the task of answering this
question, as we will see in the next section in the case of the variety of semilattices.

We have seen in Corollary 2.6 that LV occupies a good place in the Frege hierarchy.
We conclude this section by observing that nevertheless, in the relevant cases, it lies
outside of the Leibniz hierarchy.

Lemma 2.13. For each variety V, the logic LV has no theorems.

Proof. Consider any algebra A ∈ V. Since by definition 〈A, ∅〉 is a model of LV, we
conclude that LV has no theorem. �

It may seem that we tailored our definition of LV in order to obtain Lemma
2.13, since we explicitly included 〈A, ∅〉 among the models of LV for every A ∈ V.
However, this is not the case, at least for non-trivial varieties. Actually, if V is a
non-trivial variety it is easy to prove that the logic L defined by the class of matrices{
〈A, F 〉 : A ∈ V and F ⊆ A with F 6= ∅

}
coincides with LV. In order to prove this,

let A ∈ V be non-trivial, which implies there are a, b ∈ A with a 6= b. By definition
we know that {a} and {b} are filters of L. Since the intersection of filters is still a
filter, we conclude that ∅ = {a} ∩ {b} is a filter of L too. This clearly yields that
L = LV.

Corollary 2.14. For each non-trivial variety V, the logic LV is neither protoalge-
braic nor truth-equational.

Proof. Let V be a non-trivial variety. From Theorem 2.5 we know that AlgLV = V.
This implies in particular that LV is non-trivial. Since the unique protoalgebraic
logic without theorems is the almost inconsistent one, from Lemma 2.13 it follows
that LV is not protoalgebraic. Moreover truth-equational logics have theorems [18,
Theorem 28], therefore again Lemma 2.13 shows that LV is not truth-equational. �
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Figure 1. Free semilattices with 1, 2, 3, 4 free generators.

3. Logics of semilattices

From now on and until the end of the paper we will work in the language of
semilattices, i.e., the language 〈 · 〉 of type 〈2〉. We have seen how to construct the
logic closest to a certain variety V. In this section and the next ones we will focus
on logics related to a fixed variety, namely the variety of all semilattices, denoted by
SL. Recall (Example 2.8) that SL is axiomatized by the following set of equations:

x≈ x·x x·y ≈ y ·x x·(y ·z)≈ (x·y)·z.
Now let us fix some notation and recall some basic facts about this class. We will
assume all along the paper that we are working with meet-semilattices, in the sense
that, given A ∈ SL and a, b ∈ A, we will write a 6 b as a shorthand of a = a·b. We
will also denote by 2 =

〈
{0, 1}, ·

〉
the two-element semilattice with 0 < 1 and by 1

the trivial one with domain {1}. The semilattice 2 will play a fundamental role in
our analysis, since it is the only non-trivial subdirectly irreducible member of SL
and therefore SL = Psd{1,2} [7, Corollary 2.2.7].

Among semilattices, we will be particularly interested in free semilattices with a
finite set of free generators FmSL{x1, . . . , xn}. It is well known that for every n,
there is an isomorphism between FmSL{x1, . . . , xn} and the power set semilattice〈
P{x1, . . . , xn}r {∅},∪

〉
which sends the equivalence class of a formula to the set

of the variables occurring in it [7, Theorem 2.1.3]. This isomorphism is well defined
since, given two formulas α and β, SL � α ≈ β if and only if α and β have the
same variables (this property will play an essential role in many of our reasonings).
Figure 1 represents the four smallest free semilattices, ordered under the inverse of
the inclusion relation since we will work with meet-semilattices. It is worth keeping
in mind how FmSL{x, y} looks like, since it will play a central role in the proofs of
Theorems 5.5 and 5.6.

Let us now return to the main problem of the section, that of studying the wide
class of logics that enjoy a special connection with the variety of semilattices. The
next definition clarifies which connection we are talking about.

Definition 3.1. A logic L is a logic of semilattices when AlgL = SL.

Thus, the logics of semilattices are the solutions to Question 2 for V = SL. From
Theorem 2.5 it follows that a first example of a logic of semilattices is LSL. The
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other three paradigmatic examples of logics of semilattices are the {∧}-fragment and
the {∨}-fragment of classical propositional logic, and their intersection; we postpone
the proof of this fact after that of Theorem 3.3, which provides a characterisation of
the entire class. To begin with, recall that by Lemma 2.9 the logic LSL is unitary as
are all the logics LV. However, in this case we can be more precise, as deductions
of LSL just depend on the variables occurring in their formulas. To see this we
introduce the following notation, for Γ ∪ {ϕ} ⊆ Fm:

Var(ϕ) := {x ∈ Var : x occurs in ϕ} Var(Γ ) :=
⋃
ϕ∈Γ

Var(ϕ).

Lemma 3.2. Let Γ ∪ {ϕ} ⊆ Fm. Γ `SL ϕ if and only if there is γ ∈ Γ such that
Var(γ) = Var(ϕ).

Proof. First observe that for every pair of formulas α and β, it holds that SL � α ≈ β
if and only if Var(α) = Var(β). Then assume that Γ `SL ϕ. By Lemma 2.9 there is
γ ∈ Γ such that γ `SL ϕ. From Lemma 2.3 it follows that this is equivalent to the
fact that SL � γ ≈ ϕ and therefore to Var(γ) = Var(ϕ).

In order to prove the other direction, assume that Var(γ) = Var(ϕ) for some
γ ∈ Γ . As we remarked, this is equivalent to the fact that SL � γ ≈ ϕ. But by
Lemma 2.3 this implies that γ `SL ϕ, and hence that Γ `SL ϕ. �

The next result characterises logics of semilattices as non-trivial extensions of LSL.
This is interesting for two reasons: firstly because it turns out that the algebraic
counterpart of an extension of LSL is always a variety, secondly because it shows
that the fact that a logic is a logic of semilattices can be characterised by a set of
Hilbert-style rules, namely by taking as rules all deductions holding in LSL.

Theorem 3.3. Let L be non-trivial. The following conditions are equivalent:

(i) L is a logic of semilattices; i.e., AlgL = SL.
(ii) VL = SL.

(iii) LSL 6 L.

Proof. The implication (i)⇒(ii) follows from the fact that V(AlgL) = VL for
any logic L, and (ii)⇒(iii) is a particular case of the main property contained in
Corollary 2.10. Finally we prove that (iii)⇒(i). From the fact that LSL 6 L it
follows that AlgL ⊆ AlgLSL. By Theorem 2.5 we know that AlgLSL = SL, therefore
we conclude that AlgL ⊆ SL. It only remains to prove that SL ⊆ AlgL. Since
AlgL = PsdAlg

∗L and SL = Psd{1,2}, it will be enough to prove that 1,2 ∈ Alg∗L.
Observe that the trivial algebra 1 belongs to the algebraic companion of every logic.
Therefore our goal reduces to that of proving that 2 ∈ AlgL. Suppose towards a
contradiction this is not the case; then neither 〈2, {0}〉, nor 〈2, {1}〉 is a model of L.
Note that (trivially) these matrices are reduced.

We first claim that x·y L̀ y. In order to prove this, observe that since 〈2, {0}〉
is not a model of L, there must be a deduction Γ L̀ ϕ and an homomorphism
h : Fm→ 2 such that h[Γ ] ⊆ {0} and h(ϕ) = 1. Then let σ : Fm→ Fm be the
substitution defined as

σ(z) :=

{
x if h(z) = 0
y otherwise

for every variable z. By structurality of L we know that σΓ L̀ σϕ. Now observe
that h(z) = 1 for every z ∈ Var(ϕ), since h(ϕ) = 1. This yields that Var(σϕ) = {y}
and therefore, applying Lemma 3.2 and the fact that LSL 6 L, that σϕ L̀ y. We



12 JOSEP MARIA FONT AND TOMMASO MORASCHINI

conclude that σΓ L̀ y. Take any γ ∈ σΓ ; since h(γ) = 0 and 1·1 = 1, there is
z ∈ Var(γ) such that h(z) = 0 and therefore that {x} ⊆ Var(γ) ⊆ {x, y}. Applying
Lemma 3.2 and the fact that LSL 6 L, this yields that γ a`L x or γ a`L x·y.
Therefore we conclude that x, x·y L̀ γ for every γ ∈ σΓ and hence that x, x·y L̀ y.
Finally we consider a new substitution σ′ : Fm→ Fm defined as

σ′(z) :=

{
x·y if z = x
z otherwise

for every variable z. By structurality we have that x·y, (x·y)·y L̀ y. Observe that
SL � (x·y)·y ≈ x·y; therefore by Lemma 2.3 we have that x·y `SL (x·y)·y. By
assumption we know that LSL 6 L, and therefore x·y L̀ (x·y)·y. We conclude that
x·y L̀ y.

We now claim that x L̀ x·y. As one can imagine, the argument is somehow dual
to the previous one. Observe that since 〈2, {1}〉 is not a model of L, there must be
a deduction Γ L̀ ϕ and an homomorphism h : Fm→ 2 such that h[Γ ] ⊆ {1} and
h(ϕ) = 0. Then let σ : Fm→ Fm be the substitution defined as

σ(z) :=

{
x if h(z) = 1
y otherwise

for every variable z. By structurality of L we know that σΓ L̀ σϕ. Let γ ∈ Γ , since
h(γ) = 1 we know that h(z) = 1 for every z ∈ Var(γ). This yields in particular that
Var(σγ) = x and therefore, by Lemma 3.2 and the fact that LSL 6 L, that x L̀ σγ.
We conclude that x L̀ σϕ. Analogously, since h(ϕ) = 0 there is z ∈ Var(ϕ) such
that h(z) = 0. Then {y} ⊆ Var(σϕ) ⊆ {x, y}. Applying Lemma 3.2 and the fact
that LSL 6 L, this yields that σϕ a`L y or σϕ a`L x·y. Since L is non-trivial, from
Lemma 1.1 it follows that σϕ a`L x·y. This yields that x L̀ x·y and concludes
the proof of the claim.

Now, pasting together the two claims, we obtain that x L̀ y, and this, by Lemma
1.1, contradicts the assumption that L is non-trivial. �

This result allows us to construct several logics of semilattices, simply by con-
sidering extensions of LSL. The next example introduces three paradigmatic cases,
which will play an important role along the paper. Other odder examples will be
constructed in Section 4.

Example 3.4. Let L∧ be the logic axiomatised by the following three Hilbert-style
rules:

x·y ` x x·y ` y x, y ` x·y.
Analogously let L∨ be the logic axiomatised by the Hilbert calculus defined by the
following infinite set of rules:

α ` β for every α, β ∈ Fm such that Var(α) ⊆ Var(β).

It is not difficult to prove that L∧ and L∨ are respectively the {∧}-fragment and
the {∨}-fragment of classical propositional logic [1, Theorems 2.1 and 3.1]; i.e., they
are complete respectively with 〈2, {1}〉 and 〈2, {0}〉. Note that the matrix 〈2, {0}〉
is isomorphic to the “dual” matrix 〈2d, {1}〉, where 2d is the algebra on 2 = {0, 1}
obtained from 2 after shuffling 0 and 1; hence its semilattice operation is the usual
operation of disjunction.

Keeping this in mind, it is clear that L∧ and L∨ are non-trivial, and that for
every Γ ∪ {ϕ} ⊆ Fm we have the following properties:
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(i) Γ `L∧ ϕ⇐⇒ Var(ϕ) ⊆ Var(Γ );

(ii) Γ `L∨ ϕ⇐⇒ Var(γ) ⊆ Var(ϕ) for some γ ∈ Γ .

Since L∧ and L∨ are non-trivial, from Theorem 3.3 it follows that, in order to prove
that they are logics of semilattices, it will be enough to check that they extend LSL.
But this is very easy: if Γ `SL ϕ, by Lemma 3.2 we know that there is γ ∈ Γ such
that Var(γ) = Var(ϕ). From (i) and (ii) respectively it follows that γ `L∧ ϕ and
γ `L∨ ϕ, thus showing that Γ `L∧ ϕ and Γ `L∨ ϕ.

The third example we would like to consider is the intersection of L∧ and L∨,
which we will denote by L∧∨. Since LSL 6 L∧,L∨, it is clear that LSL 6 L∧∨, and
therefore, by Theorem 3.3, L∧∨ is a logic of semilattices. �

Now let us spend a few words on the classification of logics of semilattices into
the two hierarchies of abstract algebraic logic. Quite surprisingly, it turns out that
all of them lie outside the Leibniz hierarchy:

Lemma 3.5. If L is a logic of semilattices, then L has no theorems.

Proof. Suppose towards a contradiction that AlgL = SL and that there is ϕ ∈ Fm
such that ∅ L̀ ϕ. Then we would have ∅ L̀ σϕ where σ : Fm → Fm is the
substitution sending every variable to x. Since SL � σϕ≈x, by Lemma 1.2 we would
have that ∅ L̀ x. But this yields that L is the inconsistent logic, whose algebraic
counterpart is the trivial variety I{1}, against the assumption. �

As with Corollary 2.14, this immediately implies:

Corollary 3.6. If L is a logic of semilattices, then it is neither proalgebraic, nor
truth-equational. �

Even if logics of semilattices do not belong to the Leibniz hierarchy, it is possible
to prove that they belong at least to the lowest level of the Frege hierarchy, i.e.,
that their interderivability relation is a congruence on the formula algebra:

Lemma 3.7. If L is a logic of semilattices, then it is selfextensional.

Proof. Consider α, β ∈ Fm such that α a`L β. We claim that α·γ a`L β ·γ
for every γ ∈ Fm. Let γ ∈ Fm and observe that in α it occurs at least one
variable x and in β a variable y (possibly equal). Then consider the substitution
σ : Fm→ Fm defined as

σ(z) :=

x·γ if z = x
y ·γ if z = y
z otherwise

for every variable z. Clearly SL � α·γ ≈ σα and SL � β ·γ ≈ σβ. By Lemma 1.2
we conclude that α·γ a`L σα and β ·γ a`L σβ. Now, recall that by assumption
α a`L β, therefore by structurality we have that σα a`L σβ. This concludes the
proof of the claim.

It is now easy to prove that L is selfextensional. For let α, α′, β, β′ ∈ Fm be such
that α a`L α′ and β a`L β′. We have that

α·β a`L α′ ·β a`L β ·α′ a`L β′ ·α′ a`L α′ ·β′

where the first and the third interderivations follow from the claim, while the second
and the fourth follow from Lemma 1.2. �

We now retake Question 1 in the particular case of the variety of semilattices:



14 JOSEP MARIA FONT AND TOMMASO MORASCHINI

Question 4. Is there a logic (of semilattices) L such that Alg∗L = SL ?

The expression “of semilattices” is written between parentheses because this
assumption can be taken or skipped without changing the question, since AlgL =
PsdAlg

∗L. By Corollary 2.12 and Theorem 3.3, Question 4 amounts to the following
one.

Question 5. Is it true that SL ⊆ Alg∗LSL ? That is, is it true that in each semilattice
A there is some F ⊆ A such that ΩF = IdA ?

This problem is still open. An approximation to its solution requires improving
our knowledge of Alg∗LSL. Here we will prove that Alg∗LSL contains every semilattice
with sectionally finite height (see Definition 3.10), hence in particular every finite
semilattice. This quest can be simplified thanks to the fact that the behaviour of the
Leibniz congruence in the context of semilattices can be easily characterised in a way
inspired in the characterisation in [10] of ΩF for a filter F of the {∧,∨}-fragment
of classical propositional logic.

Lemma 3.8. Let A ∈ SL, F ⊆ A and a, b ∈ A. 〈a, b〉 ∈ ΩF if and only if[
a·c ∈ F if and only if b·c ∈ F

]
for every c ∈ A.

Proof. It is easy to prove that the relation R ⊆ A×A, defined as 〈a, b〉 ∈ R if and
only if

[
a·c ∈ F ⇔ b·c ∈ F

]
for every c ∈ A, is a congruence over A. Then we

check that it is compatible with F . For this, let a ∈ F and 〈a, b〉 ∈ R. Observe
that a·a = a ∈ F and therefore, since 〈a, b〉 ∈ R, that b·a ∈ F . Moreover it
holds that 〈b·a, b〉 ∈ R, since R is a congruence. Therefore, from the fact that
(b·a)·b = b·a ∈ F and 〈b·a, b〉 ∈ R, it follows that b = b·b ∈ F . We conclude that
R is compatible with F .

It only remains to prove that R is the largest congruence over A compatible with
F . For this, let θ ∈ Co(A) be compatible with F and 〈a, b〉 ∈ θ. Then 〈a·c, b·c〉 ∈ θ
for any c ∈ A. Since θ is compatible with F , this yields that a·c ∈ F if and only if
b·c ∈ F . We conclude that 〈a, b〉 ∈ R and therefore that θ ⊆ R. �

This result allows us to characterise Leibniz-reduced models of LSL and therefore
semilattices that belong to Alg∗LSL.

Theorem 3.9. Let A ∈ SL and F ⊆ A. 〈A, F 〉 ∈ Mod∗LSL if and only if for every
a, b ∈ A such that a < b, there is d ∈ A such that d 6 b and either

[
a·d ∈ F and

d /∈ F
]

or
[
a·d /∈ F and d ∈ F

]
.

Proof. For the “only if” direction, assume ΩF = IdA and let a, b ∈ A be such that
a < b. Since in particular a 6= b, by Lemma 3.8 there is c ∈ A such that either[
a·c ∈ F and b·c /∈ F

]
or
[
a·c /∈ F and b·c ∈ F

]
. Put d := b·c. Since a 6 b, we

have that a·d = a·(b·c) = a·c. Therefore either
[
a·d ∈ F and d /∈ F

]
or
[
a·d /∈ F

and d ∈ F
]
, as required.

For the “if” direction we reason by contraposition and take a, b ∈ A such that
a 6= b. We can assume, without loss of generality, that a·b < b. Therefore, by
the assumption, there is d ∈ A such that d 6 b and either

[
(a·b)·d ∈ F and

d /∈ F
]

or
[
(a·b)·d /∈ F and d ∈ F

]
. Since d = b·d, by Lemma 3.8 this yields that

〈a·b, b〉 /∈ ΩF . Since ΩF is a congruence, this implies that 〈a, b〉 /∈ ΩF . This
shows that ΩF = IdA. �



LOGICS OF VARIETIES, LOGICS OF SEMILATTICES, AND CONJUNCTION 15

Thus, the answer to Question 4 would be positive if for every A ∈ SL there is
a subset F ⊆ A satisfying the condition expressed in Lemma 3.9, and negative
otherwise. As we mentioned above, in general this is still an open problem, and no
characterisation of the class Alg∗LSL has been found that makes no reference to the
subset F , unlike in [10]. However, we will show that such a subset exists for a wide
class of semilattices. In order to do this, we need to introduce some more notation.
Let A ∈ SL. Given a, b ∈ A with a 6 b, we put [a, b] := {c ∈ A : a 6 c 6 b}, and we
write a ≺ b when a < b and there is no c ∈ A such that a < c < b. If A ∈ SL and
a ∈ A, the height of a, denoted by H(a), is the maximum length of the chains in A
having a as their top; this maximum, of course, might not exist, in which case we
say it is infinite. But we are going to use this notion only in cases where it is finite:

Definition 3.10. Let A ∈ SL. A has sectionally finite height when all its
elements have finite height, that is, when H(a) is finite for all a ∈ A.

Of course every finite semilattice has sectionally finite height. In order to prove
that semilattices with sectionally finite height belong to Alg∗LSL, we now draw a
“rainbow” on each of them:

Definition 3.11. Let A ∈ SL have sectionally finite height. R(A) := {a ∈ A :
H(a) = 2n+ 1 for some n ∈ N}.

Then R(A) is exactly the kind of subset we are looking for:

Theorem 3.12. If A ∈ SL has sectionally finite height, then ΩR(A) = IdA.

Proof. We reason towards a contradiction: suppose that ΩR(A) 6= IdA. Then there
are two different b, c ∈ A such that 〈b, c〉 ∈ ΩR(A). Put a := b·c. We can assume,
without loss of generality, that a < b. Moreover, from the fact that 〈b, c〉 ∈ ΩR(A)
and that ΩR(A) is a congruence, it follows that 〈a, b〉 ∈ ΩR(A). Since ΩR(A) is
compatible with R(A), this yields that a ∈ R(A) if and only if b ∈ R(A).

Consider the case in which a, b ∈ R(A). Even though a = a·b, we keep writing
a·b instead of a in order to make the general construction clearer. By the fact that
A has sectionally finite height and that a·b < b, we know that there is a1 ∈ [a·b, b]
such that a1 ≺ b. Since 〈a·b, b〉 ∈ ΩR(A), it holds that [a·b, b] ⊆ b/ΩR(A) and
therefore, in particular, that 〈a1 , b〉 ∈ ΩR(A). Since ΩR(A) is compatible with
R(A), this yields that a1 ∈ R(A). We conclude that H(a1) = 2n + 1 for some
n ∈ N. Since b ∈ R(A) and a1 < b, this implies that H(b) = 2k + 1 for some k > n.
Therefore there is b1 ∈ A such that H(b1) = H(a1) and c ∈ A such that b1 < c < b.

In particular this yields that b1 6= a1, since a1 ≺ b. From the fact that H(b1) =
H(a1) it follows that a1 ·b1 < b1. Now recall that 〈a1 , b〉 ∈ ΩR(A), therefore we
have that 〈a1 ·b1 , b1〉 = 〈a1 ·b1 , b·b1〉 ∈ ΩR(A). We conclude that [a1 ·b1 , b1 ] ⊆
b1/ΩR(A). This allows us to repeat exactly the same argument and construct an
element b2 such that b2 < b1. Repeating this process we build an infinite descending
chain · · · < bn < · · · < b2 < b1 < b. But this contradicts the assumption that A has
locally finite height. Therefore we are done.

It only remains to prove the case in which a, b /∈ R(A), but this is dual to the
previous one in the sense that it can be carried on in the same way but working
with elements whose height is even instead of odd. �

Corollary 3.13. If A ∈ SL has sectionally finite height, then A ∈ Alg∗LSL.
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Proof. Let A ∈ SL have sectionally finite height. Then observe that, by definition
of LSL, the matrix

〈
A, R(A)

〉
is a model of LSL. By Theorem 3.12 we conclude that〈

A, R(A)
〉
∈ Mod∗LSL and therefore that A ∈ Alg∗LSL. �

In particular Alg∗LSL contains all finite semilattices, but also many others that
are not.

The above construction of rainbows in semilattices with sectionally finite height
has been further exploited in [13] in order to prove that in these semilattices the
Leibniz operator gives rise to a bijection between some peculiar subsets of the
algebra (called “clouds”) and the set of all its congruences.

4. Ordering the logics

Now that we learned some basic properties of the logics of semilattices, we would
like to take a look at the poset they form:

Log(SL) :=
〈
{L : L is a logic of semilattices},6

〉
.

From Theorem 3.3 we know that LSL is the minimum of Log(SL), and that this
set is closed under meets (i.e., intersections) of arbitrary non-empty families. In
order to work within the context of logics of semilattices, it is useful to know how
to axiomatise our paradigmatic examples with respect to LSL. Given a logic L and
a rule Γ ` ϕ, we will write L+

[
Γ ` ϕ

]
to denote the weakest logic extending L in

which the deduction Γ ` ϕ holds (it is easy to see that such a logic exists).

Lemma 4.1.

1. L∧ = LSL +
[
x·y ` x

]
+
[
x, y ` x·y

]
.

2. L∨ = LSL +
[
x ` x·y

]
.

3. L∧∨ = LSL +
[
x, y ·z ` x·y

]
.

Proof. 1 is an easy consequence of Lemma 3.2 and 3 is proved in Example 2.1 of
[20]. To prove 2, put L′ := LSL +

[
x ` x·y

]
. In Example 3.4 we proved that L∨ is a

logic of semilattices, therefore from Theorem 3.3 it follows that LSL 6 L∨. Moreover
the deduction x ` x·y holds in L∨, therefore we conclude that L′ 6 L∨. Then
we turn to prove the reverse inequality, so suppose that Γ `L∨ ϕ. From property
(ii) of Example 3.4 it follows that there is γ ∈ Γ such that Var(γ) ⊆ Var(ϕ). If
Var(γ) = Var(ϕ), by Lemma 3.2 we know that γ a`SL ϕ and therefore Γ `L′ ϕ.
Now assume that Var(γ)  Var(ϕ) and put {x1, . . . , xk} := Var(ϕ) r Var(γ).
Consider the substitution σ : Fm→ Fm such that

σ(z) :=

{
x1 ·(. . . (xk−2 ·(xk−1 ·xk)) . . . ) if z = y
γ otherwise

for every variable z. By structurality σx `L′ σ(x·y), that is, γ `L′ γ ·σy, and by
Lemma 3.2 we have that γ ·σy a`SL ϕ, therefore we conclude that γ `L′ ϕ, which
implies Γ `L′ ϕ. �

We are now ready to characterise the maximal logics of semilattices, which turn
out to be exactly the logics of classical conjunction and disjunction.

Theorem 4.2.

1. L∧ and L∨ are the only maximal elements of Log(SL).

2. If L ∈ Log(SL) and L 66 L∧, then L = L∨.
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3. If L ∈ Log(SL) and L∧∨ < L, then either L = L∧ or L = L∨.

Proof. 1. We begin by proving that L∨ is maximal in Log(SL). For this suppose,
towards a contradiction, that there is L ∈ Log(SL) such that L∨ < L. Then there
is a deduction Γ L̀ ϕ such that Γ 0L∨ ϕ. From property (ii) of Example 3.4
it follows that Var(γ) * Var(ϕ) for every γ ∈ Γ . Now consider the substitution
σ : Fm→ Fm such that

σ(z) :=

{
x if z /∈ Var(ϕ)
y otherwise

for every variable z. By structurality we have that σΓ L̀ σϕ. Observe that, by
Lemma 1.2, we have that σϕ a`L y, and that for every γ ∈ Γ either σγ a`L x·y
or σγ a`L x, depending on whether y ∈ Var(σγ) or not. Since L is a logic of
semilattices, it is non-trivial and therefore, by Lemma 1.1, there is at least one
γ ∈ Γ such that σγ a`L x·y. We conclude that x, x·y L̀ y. Then consider a new
substitution σ′ : Fm→ Fm such that

σ′(z) :=

{
x·y if z = x
z otherwise

for every variable z. By structurality and Lemma 1.2 we conclude that x·y L̀ y.
Since L∨ 6 L, by Lemma 1.1 we conclude that L is trivial against the assumption
that it is a logic of semilattices. Thus, L∨ is maximal in Log(SL). The rest of point
1 will be proved by using point 2.

2. Assume that L ∈ Log(SL) is such that L � L∧. Then there is a deduction
Γ L̀ ϕ such that Γ 0L∧ ϕ. From property (i) of Example 3.4 it follows that there
is a variable x ∈ Var(ϕ) such that x /∈ Var(Γ ). Then consider the substitution
σ : Fm→ Fm such that

σ(z) :=

{
x if z = x
y otherwise

for every variable z. By structurality this yields that σΓ L̀ σϕ. From Lemma
1.2, it follows that y a`L σΓ and either σϕ a`L x or σϕ a`L x·y, depending on
whether y ∈ Var(σϕ) or not. Since L is non-trivial, by Lemma 1.1 we conclude that
σϕ a`L x·y and therefore that y L̀ x·y. From Lemma 4.1 it follows that L∨ 6 L
and then, since L∨ is maximal by point 1, that L = L∨.

This fact allows us to complete the proof of point 1. We begin by proving that
L∧ is a maximal element of Log(SL). Assume, towards a contradiction, that there
is L ∈ Log(SL) such that L∧ < L. Then in particular L 66 L∧, and by point 2 this
would imply that L = L∨, and hence that L∧ < L∨, which is clearly false. Hence
we conclude that L∧ is maximal too. That there are no maximals in Log(SL) other
than L∧ and L∨ is proved in the same way.

3. Observe that as a consequence of point 2, there is no logic strictly between L∧∨
and L∨, so that our goal reduces to proving that there is no logic strictly between
L∧∨ and L∧. Suppose that there is L ∈ Log(SL) such that L∧∨ < L 6 L∧. In
particular this implies that there is a deduction Γ ` ϕ which holds in L but not in
L∧∨.

We claim that Var(γ) * Var(ϕ) for every γ ∈ Γ . In order to prove this we reason
towards a contradiction, so suppose there is γ1 ∈ Γ such that Var(γ1) ⊆ Var(ϕ).
Then let {x1, . . . , xk} := Var(ϕ)r Var(γ1). From condition (i) of Example 3.4 and
the fact that Γ `L∧ ϕ, it follows that there is ψ1 ∈ Γ such that x1 ∈ Var(ψ1). By
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Lemma 1.2, this yields that ψ1 a`L∧∨ x1 ·ψ1. Now, recall from Lemma 4.1 that
x, y ·z `L∧∨ x·y. Then we conclude that γ1 , x1 ·ψ1 `L∧∨ γ1 ·x1 and therefore that
Γ `L∧∨ γ1 ·x1. Then we let γ2 := γ1 ·x1 and consider ψ2 ∈ Γ such that x2 ∈ Var(ψ2).
The same argument yields Γ `L∧∨ γ2 ·x2. Iterating this process we obtain that
Γ `L∧∨ γk−1 ·xk, where γk−1 ·xk a`L∧∨ ϕ by Lemma 1.2, against the assumption.
This concludes the proof of our claim.

Then we consider the subsitution σ : Fm→ Fm defined as

σ(z) :=

{
x if z ∈ Var(ϕ)
y otherwise

for every variable z. By structurality we have that σΓ L̀ σϕ. From Lemma 1.2, it
follows that σϕ a`L x. Moreover our claim implies that {y} ⊆ Var(σγ) ⊆ {x, y}
for every γ ∈ Γ and that either σγ a`L x·y or σγ a`L y, depening on whether
x ∈ Var(σγ) or not. We conclude that y, x·y L̀ x. Then consider a new substitution
σ′ : Fm→ Fm such that

σ′(z) :=

{
x·y if z = y
z otherwise

for every variable z. By structurality and Lemma 1.2 we conclude that x·y L̀ x.
Therefore by Lemma 4.1, in order to prove that L = L∧, it is enough to check that
x, y L̀ x·y. But this follows easily from the fact that x, y ·z `L∧∨ x·y, therefore we
are done. �

Our next goal is to prove that Log(SL) is atomless, i.e., that there is no
L ∈ Log(SL) such that LSL < L and for every L′ ∈ Log(SL) if LSL < L′ 6 L, then
L′ = L. In order to do this, let us fix for the rest of the section an enumeration
of the set of variables of our language Var = {x0, x1, x2, . . . }. For each natural
number n, we define a set of formulas and a logic:

W (n) :=
{
ϕ ∈ Fm : Var(ϕ)  {x0, . . . , xn} or Var(ϕ) = {x0, . . . , xn+1}

}
Wn := LSL +

[
W (n) ` x0 ·(x1 · . . . ·(xn−1 ·xn) . . . )

]
(1)

Observe that, since the logics Wn are extensions of LSL, the set of premises W (n)
of the deduction (1) above can be finitised by selecting its formulas in which no
variable occurs more than once. Observe in particular that W0 is the weakest logic
extending LSL in which the deduction x0 ·x1 ` x0 holds; this implies that W0 is
strictly weaker than L∧, but not weaker than L∨.

Lemma 4.3. Let L ∈ Log(SL) and let Γ ∪ {ϕ} ⊆ Fm be such that Γ L̀ ϕ and
Γ 0SL ϕ. Then Wk−1 6 L, where k := |Var(ϕ)|.

Proof. We start by choosing any ψ ∈ Fm such that Var(ψ) = {x0, . . . , xk}
and consider a substitution σ : Fm → Fm which maps bijectively Var(ϕ) into
{x0, . . . , xk−1} and each variable y /∈ Var(ϕ) to ψ. By structurality σΓ L̀ σϕ.
From Lemma 1.2, it follows that σϕ a`L x0 ·(x1 · . . . ·(xk−2 ·xk−1) . . . ). More-
over observe that, since Γ 0SL ϕ, by Lemma 3.2 there is no γ ∈ Γ such that
Var(γ) = Var(ϕ). This yields that for every γ ∈ Γ either Var(σγ) = {x0, . . . , xk}
or Var(σγ)  {x0, . . . , xk−1}. Therefore we conclude that σΓ ⊆W (k− 1). But this
yields W (k − 1) L̀ x0 ·(x1 · . . . ·(xk−2 ·xk−1) . . . ) and therefore that Wk−1 6 L. �

We are now ready to prove that Log(SL) is atomless.

Theorem 4.4.
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1. If n < m, then Wm <Wn.

2. If L ∈ Log(SL) and LSL < L, thenWn < L for some n; that is, LSL =
⋂
n∈ωWn.

3. Log(SL) is atomless.

Proof. 1. Let n < m. In order to prove that Wm 6Wn, consider the substitution
σ : Fm→ Fm such that

σ(z) :=

{
z ·(xn+1 ·(xn+2 · . . . (xm−1 ·xm) . . . )) if z ∈ {x0, . . . , xn}
z ·xm+1 otherwise

for every variable z. By structurality, σW (n) `Wn
σ
(
x0 ·(x1 · . . . ·(xn−1 ·xn) . . . )

)
.

By Lemma 1.2 we know that

σ
(
x0 ·(x1 · . . . ·(xn−1 ·xn) . . . )

)
a`Wn

x0 ·(x1 · . . . ·(xm−1 ·xm) . . . ).

Moreover it is easy to check that σW (n) ⊆ W (m) and therefore that W (m) `Wn

x0 ·(x1 · . . . ·(xm−1 ·xm) . . . ). This shows that Wm 6 Wn, and it only remains to
prove that Wm 6= Wn. In order to do this, take F :=

{
JγK ∈ FmSL : γ ∈ W (n)

}
.

We will prove that 〈FmSL, F 〉 is a model of Wm. Clearly 〈FmSL, F 〉 is a model
of LSL, therefore it will be enough to check that it is a model of the rule W (m) `
x0 ·(x1 · . . . ·(xm−1 ·xm) . . . ).

Suppose the contrary. Then there is an homomorphism h : Fm→ FmSL such
that h[W (m)] ⊆ F and h

(
x0 ·(x1 · . . . ·(xm−1 ·xm) . . . )

)
/∈ F . Since m 6= 0, observe

that {x0, . . . , xm} ⊆ W (m). Hence h
(
x0 ·(x1 · . . . ·(xm−1 ·xm) . . . )

)
belongs to the

subsemilattice of FmSL generated by h[W (m)]. In particular, since h[W (m)] ⊆ F ,
this implies that h

(
x0 ·(x1 · . . . ·(xm−1 ·xm) . . . )

)
belongs to the subsemilattice of

FmSL generated by F . But, from the definition of F , it follows that this sub-
semilattice has universe F ∪ {Jx0 ·(x1 · . . . ·(xn−1 ·xn) . . . )K}. Therefore we con-
clude that h

(
x0 ·(x1 · . . . ·(xm−1 ·xm) . . . )

)
= Jx0 ·(x1 · . . . ·(xn−1 ·xn) . . . )K, since

h
(
x0 ·(x1 · . . . ·(xm−1 ·xm) . . . )

)
/∈ F .

In particular, this implies that for every JxkK ∈
{
Jx0K, . . . , JxnK

}
, there is xk ∈

{x0, . . . , xm} such that Jx0 ·(x1 · . . . ·(xn−1 ·xn) . . . )K 6 h(xk) 6 JxkK. This clearly
yields that h

(
x0 ·(x1 · . . . ·(xn−1 ·xn) . . . )

)
= Jx0 ·(x1 · . . . ·(xn−1 ·xn) . . . )K /∈ F . But,

since n < m, we have that x0 ·(x1 · . . . ·(xn−1 ·xn) . . . ) ∈W (m) against the assump-
tion that h[W (m)] ⊆ F . Therefore we conclude that 〈FmSL, F 〉 is a model of
Wm.

The fact that 〈FmSL, F 〉 is not a model of W (n) follows from the fact that
πW (n) = F and π

(
x0 ·(x1 · . . . ·(xn−1 ·xn) . . . )

)
/∈ F , where π : Fm→ FmSL is the

projection onto the quotient. We conclude that Wm 6= Wn and therefore we are
done.

2. Assume L ∈ Log(SL) is such that LSL < L. Then there is a deduction Γ L̀ ϕ
such that Γ 0LSL

ϕ. From Lemma 4.3 it follows that W|Var(ϕ)|−1 6 L. Now, by
point 1, we conclude that W|Var(ϕ)| < L.

3 is an easy consequence of points 1 and 2. �

Theorem 4.2 implies that each logic of semilattices that is strictly weaker than
L∨ is strictly weaker than L∧ too. We will show that the behaviour of L∨ and L∧ is
not analogous, by constructing several logics of semilattices strictly weaker than L∧
which are not weaker than L∨. A first example of such logics is W0; therefore, each
logic of semilattices that extends W0 will be weaker than L∧ and not weaker than
L∨. We will see that there is an infinite descending chain of logics (of semilattices)
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between L∧ and W0. In order to do this, for each natural number n we define a set
of formulas and a corresponding logic:

R(n) :=
{
ϕ ∈ Fm : Var(ϕ)  {x0, . . . , xn+1}

}
Rn :=W0 +

[
R(n) ` x0 ·(x1 · . . . ·(xn ·xn+1) . . . )

]
(2)

Also in this case the set of premisses R(n) of the deduction (2) can be finitised by
selecting the formulas in which no variable occurs more than once.

Theorem 4.5.

1. R0 = L∧.

2. If n < m, then Rm < Rn.

Proof. 1 is an easy exercise, therefore we turn to prove 2. For n < m consider the
substitution σ : Fm→ Fm defined as

σ(z) :=

{
z ·(xn+2 ·(xn+3 · . . . ·(xm ·xm+1) . . . )) if z ∈ {x0, . . . , xn+1}
z otherwise

for every variable z. By structurality, σR(n) `Rn σ(x0 ·(x1 · . . . ·(xn ·xn+1) . . . )).
By Lemma 1.2, we know that

σ(x0 ·(x1 · . . . ·(xn ·xn+1) . . . )) a`Rn
x0 ·(x1 · . . . ·(xm ·xm+1) . . . ).

Moreover it is easy to prove that σΓ ⊆ R(m). We conclude that R(m) `Rn

x0 ·(x1 · . . . ·(xm ·xm+1) . . . ) and therefore that Rm 6 Rn.
It only remains to prove that Rm 6= Rn. In order to do this, take F :=

{
JγK ∈

FmSL : γ ∈ R(n)
}

. We will prove that 〈FmSL, F 〉 is a model of Rm. Clearly
〈FmSL, F 〉 is a model of W0, therefore it will be enough to check that it is a model
of the rule R(m) ` x0 ·(x1 · . . . ·(xm ·xm+1) . . . ).

Suppose the contrary, so that there is an homomorphism h : Fm → FmSL

such that h[R(m)] ⊆ F and h
(
x0 ·(x1 · . . . ·(xm ·xm+1) . . . )

)
/∈ F . Then observe

that {x0, . . . , xm+1} ⊆ R(m). Hence h
(
x0 ·(x1 · . . . ·(xm ·xm+1) . . . )

)
belongs to the

subsemilattice of FmSL generated by h[R(m)]. In particular, since h[R(m)] ⊆ F ,
this implies that h

(
x0 ·(x1 · . . . ·(xm ·xm+1) . . . )

)
belongs to the subsemilattice of

FmSL generated by F . But, from the definition of F , it follows that this sub-
semilattice has universe F ∪ {Jx0 ·(x1 · . . . ·(xn ·xn+1) . . . )K}. Therefore we con-
clude that h

(
x0 ·(x1 · . . . ·(xm ·xm+1) . . . )

)
= Jx0 ·(x1 · . . . ·(xn ·xn+1) . . . )K, since

h
(
x0 ·(x1 · . . . ·(xm ·xm+1) . . . )

)
/∈ F .

In particular, this implies that for every JxkK ∈
{
Jx0K, . . . , Jxn+1K

}
, there is

xk ∈ {x0, . . . , xm+1} such that Jx0 ·(x1 · . . . ·(xn ·xn+1) . . . )K 6 h(xk) 6 JxkK. This
clearly yields that h

(
x0 ·(x1 · . . . ·(xn ·xn+1) . . . )

)
= Jx0 ·(x1 · . . . ·(xn ·xn+1) . . . )K /∈

F . But, since n < m, we have that x0 ·(x1 · . . . ·(xn ·xn+1) . . . ) ∈ R(m) against the
assumption that h[R(m)] ⊆ F . Therefore we conclude that 〈FmSL, F 〉 is a model
of Rm.

The fact that 〈FmSL, F 〉 is not a model of R(n), follows from the fact that
πR(n) = F and π

(
x0 ·(x1 · . . . ·(xn ·xn+1) . . . )

)
/∈ F , where π : Fm→ FmSL is the

projection onto the quotient. We conclude that Rm 6= Rn and therefore we are
done. �

Figure 2 presents a partial picture of Log(SL). The dotted lines indicate that
there is no logic of semilattices strictly between their edges, while dashed and solid
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•L∨ • L∧ = R0

L∨ ∩ L∧ = L∧∨ • • R1

• Rn

• W0

• L∧∨ ∩Wo

• W1

• Wn

• LSL

Figure 2. Order relations in a part of Log(SL).

lines admit the presence of other logics; in particular the dahsed lines indicate the
location of the two infinite families of logics constructed in this section.

5. The logic of conjunction

In the previous sections we assumed a very general perspective, embracing every
logic whose algebraic counterpart is the variety of semilattices. Now we would like
to focus on a concrete such logic, namely the logic of classical conjunction L∧. Our
first aim will be to prove that L∧ is intrinsically bivalent. In order to do this let us
record that deductive filters of L∧ coincide with subsets for which · behaves like a
comma.

Lemma 5.1. Let F ⊆ A. F ∈ FiL∧(A) if and only if
[
a, b ∈ F ⇐⇒ a·b ∈ F

]
for

every a, b ∈ A. �

This fact implies that the Leibniz congruence literally “cuts into two parts” the
models of the logic, so that all Leibniz-reduced algebras will forcefully be two valued.

Lemma 5.2. Let F ∈ FiL∧(A). For every a, b ∈ A it holds that 〈a, b〉 ∈ ΩF if
and only if

[
a, b ∈ F or a, b /∈ F

]
.

Proof. Let R ⊆ A×A be the relation defined as 〈a, b〉 ∈ R if and only if
[
a, b ∈ F

or a, b /∈ F
]
. It is clear the R is an equivalence relation and that it is the maximal

one compatible with F . Therefore, in order prove that R = ΩF , it only remains to
check that R is a congruence. But this easily follows from Lemma 5.1. �

From this result it is possibile to characterise the class of Leibniz-reduced models
of L∧, the interesting point here being that L∧ represents a case of extreme difference
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between the class of Leibniz-reduced algebras and its algebraic counterpart, since
one of them seems to be extremely poor.2

Corollary 5.3.

1. Alg∗L∧ = I{1,2} and AlgL∧ = SL.

2. Mod∗L∧ = I{〈1, ∅〉, 〈1, {1}〉, 〈2, {1}〉}.

Proof. 1. Recall from Example 3.4 that AlgL∧ = SL, so that Alg∗L∧ ⊆ SL. By
Lemma 5.2 each member of Alg∗L∧ has at most two elements. Since 2 is (up to

isomorphism) the only two-element semilattice, this yields that Alg∗L∧ ⊆ I{1,2}.
Moreover 1 ∈ Alg∗L for every logic L, and it is straightforward to prove that
〈2, {1}〉 is a reduced model of L∧ and therefore that 2 ∈ Alg∗L∧. We conclude that

Alg∗L∧ = I{1,2}.
2 follows easily from 1 and Lemma 5.1. �

Keeping in mind the fact that L∧ is the {∧}-fragment of classical propositional
logic, it is easy to prove a general, and somehow surprising completeness result for
it.

Lemma 5.4. The logic L∧ is complete with respect to any matrix 〈A, F 〉 such that
A is non trivial and F ∈ FiL∧(A)r {∅, A}.

Proof. The {∧}-fragment of classical logic is, by definition, complete with respect
to the matrix 〈2, {1}〉. But by using Lemma 5.2 it is easy to prove that 〈A, F 〉∗ ∼=
〈2, {1}〉. Since a matrix and its reduction via the Leibniz congruence determine
the same logic, we conclude that L∧ will be complete with respect to the matrix
〈A, F 〉. �

We are now ready to state our desired result which characterises L∧ from its
class of Leibniz-reduced algebras, namely as the unique logic which has a purely
bivalent algebra-based semantics from the point of view of the Leibniz operator.

Theorem 5.5. L∧ is the only logic L such that Alg∗L = I{1,2}.

Proof. From point 1 of Corollary 5.3 we know that Alg∗L∧ = I{1,2}. Therefore it

will be enough to check that for every logic L if Alg∗L = I{1,2}, then L = L∧. In

order to do this, let L be such that Alg∗L = I{1,2}. First observe that the matrix

〈1, {1}〉 is a reduced model of every logic. Moreover, since AlgL = PsdAlg
∗L = SL,

we can apply Lemma 3.5 and get that 〈1, ∅〉 ∈ Mod∗L too. It is clear that there
cannot be other matrices whose algebraic reduct is 1.

The only reduced matrices whose algebraic reduct is 2 are 〈2, {0}〉 and 〈2, {1}〉.
Since 2 ∈ Alg∗L we know that at least one of these should be a model of L. Then
suppose towards a contradiction that 〈2, {0}〉 is a model of L. Recall from Figure 1
how FmSL{x, y} looks like. We consider the epimorphisms f, g : FmSL{x, y} → 2

2The contents of the following corollary was stated without proof by Rautenberg in the example
in page 68 of [21].
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defined as

f(a) :=

{
1 if a = JxK
0 if a ∈

{
JyK, Jx·yK

}
g(a) :=

{
1 if a = JyK
0 if a ∈

{
JxK, Jx·yK

}
.

for every a ∈ FmSL{x, y}. Since inverse images of deductive filters under homo-
morphisms are deductive filters and the family of deductive filters is closed under
intersections we conclude that

{
Jx·yK

}
∈ FiL

(
FmSL{x, y}

)
. Since Ω

{
Jx·yK

}
=

IdFmSL{x,y}, we would have FmSL{x, y} ∈ Alg∗L against the assumption that

Alg∗L = I{1,2}. Therefore we conclude that the only reduced model of L, whose al-

gebraic reduct is 2, is 〈2, {1}〉. This yields that Mod∗L = I
{
〈1, ∅〉, 〈1, {1}〉, 〈2, {1}〉

}
.

Since a logic is characterised by its Leibniz-reduced models, from Corollary 5.3 it
follows that L = L∧. �

We would like to turn back now to the more general context of logics of semilattices
and ask if it is possible to characterise L∧ among them. Theorem 4.2 provides a first
step in this direction by telling us that L∧ is a maximal element in Log(SL), but
the next result provides a more precise characterisation, namely a characterisation
in terms of a property of the Leibniz operator. In order to do this, let us fix some
terminology: given two complete lattices A and B, we say that a map α : A→ B
disconnects points if for every a, b ∈ Ar {⊥,>} such that a 6= b, the images α(a)
and α(b) are incomparable in B. The meaning of the expression “disconnects points”
is intended to remark that what α is doing is just breaking all non-trivial order
connections in A and mapping it (except the bounds) to a totally order-disconnected
set.

Theorem 5.6. Let L be a logic of semilattices. The following conditions are
equivalent:

(i) L = L∧.
(ii) Ω : FiL(A)→ Co(A) disconnects points, for every algebra A;

(iii) Ω : ThL → Co(Fm) disconnects points.

Proof. (i)⇒(ii) Let A be an algebra; we have to prove that Ω disconnects points on
FiL∧(A). From Lemma 5.2 it follows that the minimum of FiL∧(A) is ∅. Then pick
F,G ∈ FiL∧(A)r {∅, A}. First we claim that F 6= ArG. Suppose the contrary:
since G /∈ {∅, A}, there are a, b ∈ A such that a ∈ G and b /∈ G. By Lemma 5.1
this is to say that a·b /∈ G. Then a·b ∈ F and, by Lemma 5.1, a ∈ F against the
assumption that F = ArG.

To prove that Ω disconnects points on FiL∧(A) we have to show that if ΩF ⊆
ΩG, then F = G. We reason towards a contradiction, so we assume that ΩF ⊆ ΩG
and that F 6= G. We have two cases:

1. a ∈ F and a /∈ G for some a ∈ A;
2. a /∈ F and a ∈ G for some a ∈ A.

We begin by case 1. Pick b ∈ F , by Lemma 5.2 we have that 〈a, b〉 ∈ ΩF and
therefore 〈a, b〉 ∈ ΩG which, applying another time Lemma 5.2, yields b /∈ G. This
proves that F ⊆ ArG. But we claimed that F 6= ArG, therefore there is c ∈ A
such that c /∈ G and c /∈ F . Now, since G 6= ∅, there is d ∈ A such that d ∈ G and
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consequently d /∈ F . By Lemma 5.2 we conclude that 〈c, d〉 ∈ ΩF and 〈c, d〉 /∈ ΩG,
against the assumption that ΩF ⊆ ΩG. The proof of case 2 is somehow dual.
By an analogous argument one can check that A r F ⊆ G. Since we know that
A r F 6= G, there is c ∈ A such that c ∈ F and c ∈ G. Moreover, since G 6= A,
there is d ∈ A such that d /∈ G and therefore d ∈ F . By Lemma 5.2 this yields that
〈c, d〉 ∈ ΩF and 〈c, d〉 /∈ ΩG against the assumption that ΩF ⊆ ΩG. We conclude
that Ω disconnects points on FiL∧(A).

(ii)⇒(iii) is straightforward; therefore we turn to prove (iii)⇒(i). Recall first,
from Lemma 3.7, that L is selfextensional. This easily yields that FmSL{x, y} =
Fm{x, y}/∼ΩL{x, y}, where Fm{x, y} and L{x, y} are respectively the formula
algebra with variables {x, y} and the restriction of L to it. Now, since L is a logic
of semilattices, by Theorem 4.2 it will be enough to prove that L∧ 6 L. In order
to do this, we will prove that the three rules of the Hilbert calculus defining L∧
(Example 3.4) hold in L too. In doing this, we shall keep in mind how FmSL{x, y}
looks like (see Figure 1).

We begin by proving that x, y L̀ x·y. We reason towards a contradiction, so
suppose that x, y 0L x·y. This clearly yields that

{
JxK, JyK

}
∈ FiL(FmSL{x, y}).

From x, y 0L x·y it follows that x 0L x·y and from the fact that L is non-trivial
and Lemma 1.1 that x 0L y. We conclude that

{
JxK
}
∈ FiL(FmSL{x, y}). Then

choose an epimorphism h : Fm→ FmSL{x, y}. Then let Γ := h−1[
{
JxK, JyK

}
] and

Γ ′ := h−1[
{
JxK
}

]. Since inverse images of filters under homomorphisms are still
deductive filters, we know that Γ, Γ ′ ∈ ThLr {∅, Fm}. Moreover, since the Leibniz
operator commutes with inverse images of epimorphisms, we have that

ΩΓ = h−1Ω
{
JxK, JyK

}
= h−1IdFmSL{x,y} ⊆ h

−1Ω
{
JxK
}

= ΩΓ ′.

This fact, together with Γ 6= Γ ′, implies that Ω does not disconnect points over
ThL, against the assumption.

It only remains to prove that x·y L̀ x, since the proof of the dual rule is analogous.
Also this time we reason towards a contradiction, so suppose that x·y 0L x. Observe
that by Lemma 1.2 we have that x·y a`L y ·x. This yields that x·y 0L y and
therefore that

{
Jx·yK

}
∈ FiL(FmSL{x, y}). Now, since L is non-trivial, by Lemma

1.1 we know that x 0L y. This yields that Fi
FmSL{x,y}
L

{
JxK
}
/∈
{
∅, FmSL{x, y}

}
.

Now let Γ := h−1[
{
Jx·yK

}
] and Γ ′ := h−1[Fi

FmSL{x,y}
L

{
JxK
}

]. As before we have
that Γ, Γ ′ ∈ ThLr {∅, Fm}. Moreover, since the Leibniz operator commutes with
inverse images of epimorphisms, we have that

ΩΓ = h−1Ω
{
Jx·yK

}
= h−1IdFmSL{x,y} ⊆ h

−1ΩFi
FmSL{x,y}
L

{
JxK
}

= ΩΓ ′.

This fact, together with Γ 6= Γ ′, implies that Ω does not disconnect points over
ThL, against the assumption as well. �

Blok and Pigozzi suggest in [4, p. 15] a philosophical reading of the relation
between a theory and its corresponding Leibniz congruence. More precisely they
propose to think of a theory T as of a state of knowledge and of ΩT as identifying
the terms that have the same properties according to the knowledge in T . From
this point of view, applied to matrices in general, the fact that the Leibniz operator
disconnects points acquires a more intuitive meaning: it tells us that each pair of
(non-trivial) different states of knowledge leads to two incomparable visions of the
world as far as their ability to identify terms by their properties known to them is
concerned.
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Another fact about L∧ that is worth remarking is that its lattice of theories enjoys
a curious structure, namely that it is isomorphic to a power set lattice. In order to
show this let λ : P(Var)→ P(Fm) be defined as λ(X) :=

{
ϕ ∈ Fm : Var(ϕ) ⊆ X

}
for every X ⊆ Var.

Lemma 5.7. λ : P(Var) → ThL∧ is a lattice isomorphism (with respect to the
subset relation).

Proof. The fact that λ is well-defined follows from property (i) of Example 3.4. Now,
observe that λ is clearly monotone and injective, therefore it only remains to prove
that it is surjective. Then take any T ∈ ThL∧ and X :=

{
x ∈ Var : x ∈ Var(T )

}
.

Clearly we have T ⊆ λ(X). The reverse inclusion follows from property (i) of
Example 3.4. �

Thus, the lattice of theories of the conjunctive fragment of classical logic is a
Boolean algebra; this contrasts with the well-known fact that the lattice of theories
of classical logic is not a Boolean algebra, but a Heyting algebra.

We would like to conclude our trip along the abstract study of conjunction by
giving a characterisation of the full g-models of L∧. In order to do this, let us say
that a g-matrix 〈A, C〉 has the emptiness property (E) when C∅ = ∅, and that it
has the conjunction property (PC) when C{a·b} = C{a, b} for every a, b ∈ A.

Theorem 5.8. Let 〈A, C〉 be a g-matrix. 〈A, C〉 is a full g-model of L∧ if and only
if it is finitary and has (E) and (PC).

Proof. For the “only if ” direction, let 〈A, C〉 be a full g-model of L∧. Recall from
Lemma 3.5 that L∧ has no theorems and that by definition it is finitary and has
the (PC). Since these properties transfer from the logic to every full g-model (see
for instance [11], pp. 34 and 50) we are done.

We now turn to prove the “if ” direction. Let 〈A, C〉 be a finitary g-matrix with
the (E) and (PC). From the fact that 〈A, C〉 has the (PC) it easily follows that it is
a g-model of L∧ and that ΛC is a congruence of A, see [11], p. 50, items 1 and 3.
But then we can use Proposition 2.46 of [11] which says that for a logic with (E)
and (PC), any finitary g-model of it with (E) and the property of congruence (i.e.,
that ΛC is a congruence) is a full g-model. So, in this case, 〈A, C〉 turns out to be a
full g-model of L∧ and we are done. �

Drawing consequences from Theorem 5.8 we obtain a fully adequate Gentzen
system for L∧. Since our logic is finitary and without theorems we shall consider
sequents whose left-hand sides are non-empty finite sets of formulas (so that the
rules of Exchange and Contraction are already implicit in the notation). We denote
by G∧ the Gentzen system defined by the following rules:

α� α (R)
Γ � α

Γ, β � α
(W)

Γ � α Γ, α� β

Γ � β
(Cut)

Γ, α, β � γ

Γ, α ∧ β � γ
(∧�)

Γ � α Γ � β

Γ � α ∧ β
(�∧)

Since, clearly, having the (PC) amounts to being a model of the above rules, from
Definition 4.10 of [11] it easily follows:
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Corollary 5.9. G∧ is fully adeguate for L∧. �

Moreover since L∧ is finitary, selfextensional and has the (PC), it follows from the
general theory of [11], and more precisely from its Theorem 4.27 plus the uniqueness
of the fully adequate Gentzen system for a logic, that the Gentzen system G∧ is
algebrizable, with equivalent algebraic semantics SL and via the mutually inverse
structural trasformers τ : P(Seq)←→ P(Eq) : ρ defined as

τ(Γ � ϕ) :=
∧
Γ 6 ϕ ρ(α≈ β) = {α� β, β � α}

for every sequent Γ � ϕ ∈ Seq and every equation α≈ β ∈ Eq.
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